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PREFACE-'= .±:LL
This report was completed in late 1981. In view of the long

delay of publication (1985), it is appropriate to note that con-

siderable progress has since been made in some of the suoject areas

discussed herein. For updated information the reader is referred to

the following papers and reports:

Modelin2 of Plain Concrete

Valanis, K. C. and H. E. Read, "An Endochronic Plasticity
Theory for Concrete," Proc. Second Symp. on the Interaction of
Non-Nuclear Munitions with Structures, Panama City Beach,
Florida, April 1985.

Valanis, K. C., and H. E. Read, "An Endochronic Plasticity
Theory for Concrete," Mechanics of Materials, Vol. 4, No. 2,
1985.

Lade, P. V., "Three-Parameter Failure Criterion for Concrete,"
J. Engng. Mech. Div., ASCE, Vol. 108 (EM5), 1982.

Modeling of Reinforced Concrete

Hegemier, G. A., and H. Murakami, "A Nonlinear Theory for
Reinforced Concrete," Proc. Second Symp. on the Interaction of
Non-Nuclear Munitions with Structures, Panama City Beach,
Florida, April 1985.

Hegemier, G. A., H. E. Read, H. Murakami, L. J. Hageman, and
R. G. Herrmann, "Development of Advanced Constitutive Model
for Reinforced Concrete," S-CUBED Second Annual Report to the
AFOSR, SSS-R-83-6112, April 1983.

Hegemier, G. A., H. E. Read and H. Murakami, "Development of
Advanced Constitutive Model for Reinforced Concrete," S-CUBED
Final Report to the AFOSR, SSS-R-84-6684, April 1984.

Hegemier, G. A., H. Murakami, and L. J. Hageman, "On Tension
Stiffening in Reinforced Concrete," Mechanics of Materials,
Vol. 4, No. 2, 1984.

MuraKami, H. and G. A. Hegemier, "On Simulating Steel-Concrete
Interaction in Reinforced Concrete, Part 1: Theoretical
Development," Mechanics of Materials, 1985 (to appear).
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Hagemann, L. J., H. Murakami, and G. A. Hegemier, "On Simu-
lating Steel-Concrete Interaction in Reinforced Concrete, Part
II: Validation Studies," Mechanics of Materials, 1985 (to
appear).

Strain Rate Effects

Read, H. E., "Strain Rate Effects in Concrete: A Review of
Experimental Methods," S-CUBED Report SSS-R-85-6081, January
1985.

Strain Softening

Read, H. E. and G. A. Hegemier, "Strain Softening of Rock,
Soil and Concrete -- A Review Article," Mechanics of Mate-
rials, Vol. 3, No. 4, 1984.

Survey Articles

Hegemier, G. A. and H. E. Read, "On Deformation and Failure of
Brittle Solids: Some Outstanding Issues," Mechanics of Mate-
rials, Vol. 4, No. 3, 1985.

1 July 1985
G.AA.H4&er Date
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SECTION 1

INTRODUCTION

1.1 OBJECTIVE

The primary objective of this research program is to initiate

the construction and validation of an advanced continuum model of

reinforced concrete that simulates real material behavior in the

highly nonlinear range of material response.

A secondary objective is to identify experimental and

theoretical problem areas associated with model development and

validation, and to recommend remedial research where necessary.

It is intended that the continuum constitutive model of

reinforced concrete under development be, when completed:

. Nonphenomenological

* Multiaxial

* Applicable to both dense and sparse steel layouts.

* Valid for arbitrary time histories

It is also intended that the model properly describe:

a Failure surface geometry

* Strain hardening, softening

* Stiffness degradation

* Anisotropy due to steel

0 Anisotropy due to cracking

* Stress, deformation path dependence

a Strain-rate effects

The term "nonphenomenological" above denotes a model that will

synthesize the global behavior of reinforced concrete from a

description of the concrete and steel properties, the concrete-steel

interface properties, and the steel geometry. The purpose of such a

model is to minimize the number and size of tests necessary to

evaluate the model parameters, and to allow immediate identification

of the physical significance of each model parameter.
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The term "multiaxial" above has the usual connotation:

arbitrary stress (deformation) states and stress (deformation) paths.

Both "dense" and "sparse" steel layouts occur in practice,

although the former is more common in the defense community.

Consequently, it is important that a model of reinforced concrete be

applicable to a practical range of steel layouts.

The loading conditions associated with reinforced concrete

structures in a defense environment envelop a wide range of strain

rates. Of particular importance is the high strain-rate regime.

Consequently, a complete constitutive model of reinforced concrete

should incorporate time history or strain-rate effects.

The second group of terms noted above refer to the basic

measures of material response: strength, stiffness, and ductility,

and to the changes in these measures due to progressive cracking and

degradation of the steel-concrete bond, and stress-rate.

1.2 APPROACH

The task of constructing a viable constitutive model of

reinforced concrete can be partitioned into several basic subtasks.

The first such subtask consists of formulating sufficiently accurate

models of the constituents: steel and concrete. The former does

not present a problem; the latter does. Consequently, the first

subtask consists of formulating an improved model of plain

concrete. In what follows, this effort is further partitioned

into: (1) rate-independent models and (2) rate-dependent models.

The second subtask consists of mathematically describing the

behavior of the steel-concrete interfaces.

The third subtask consists of formulating a procedure for

analytically mixing the steel and concrete. This must be defined

such that the steel-concrete interaction, which plays a critical

role in the global response of reinforced concete, is adequately

modeled. Further, the mixing procedure must synthesize the global

properties of reinforced concrete from the properties of plain

14
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concrete, steel, interfaces, and the steel geometry. In what

follows, this effort is further partitioned into four important

problems areas: (1) the steel-concrete bond problem, (2) the

steel-concrete dowel problem, (3) the concrete aggregate interlock

problem, and (4) the steel-buckling-concrete-spallation problem.

Problem (1) plays a dominant role in the bending and nonlinear

stretching (associated with membrane action) of RIC beams, plates

and shells (e.g., the "late-time" bending and nonlinear stretching

of R/C protective box-type structure roofs). Problem (2) plays a

major role in the transverse shear deformation of RIC beams, and the

transverse and in-plane shear deformation of RIC plates and shells

(e.g., the "early-time" response of R/C protective box-type

structure roofs and the protective cover "punch-out" problem).

Problem (3) plays an important role in those cases wherein relative

motion occurs across existing cracks (e.g., hysteretic in-plane

shear deformation of R/C plates). Problem (4), which concerns

containment of the concrete by the rebar mesh, spallation of the

concrete, and subsequent buckling of rebar, plays an important role

in direct compression of R/C structural elements (e.g., impact

loading of a R/C liner in the axial direction).

The final task consists of validating the resulting models of

plain and reinforced concrete by experimental versus theoretical

data comparisons.

To accomplish the task of modeling plain concrete, the use of

a plastic-fracturing theory is explored herein. This formulation

allows simulation of both progressive fracture and "plastic" slip,

and it includes elasto-fracture coupling (i.e., stiffness

degradation). A major advantage of this approach is that the

constitutive relation is linear in the stress and strain increments.

To accomplish the task of analytically mixing the steel and

concrete, a mixture-theory-with-microstructure approach is explored

herein. This procedure has been previously used with considerable

success to model fibrous composite materials. The technique, which

must be expanded to cover problems peculiar to reinforced concrete,

15
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allows one to directly synthesize the global composite material

properties from the component properties.

1.3 SINGLE VERSUS TWO-PHASE MODELS

Both 'two-phase' and 'single-phase' mixture models of

reinforced concrete are discussed in this report. The two-phase

model retains the identity of the individual constituents (steel and

concrete) while the single-phase theory represents a single, new

composite material in which the steel and concrete are completely

homogenized.

The advantage of a two-phase model is increased (over a

single-phase model) simulation capability and accuracy. In

addition, the role of each constituent is easily identified. The

disadvantage is increased (over a single-phase model) complexity:

roughly twice the dependent variables associated with a single-phase

model.

The advantage of a single-phase model is its simplicity. This

simplicity, however, is obtained at the price of reduced simulation

capability and reduced accuracy. Nevertheless, for many practical

applications these reductions are not serious. A single-phase model

also has the advantage that it can be readily incorporated into

current finite element codes. This is in contrast to the two-phase

formulation which requires special numerical treatment.

It is noted that development of a two-phase theory has

progressed under AFOSR support** while development of a single phase

theory has progressed under DNA support.* It is emphasized,

however, that one must derive a two-phase model before a single-

phase model can be constructed. Consequently, there has been

considerable overlap in these two programs in the area of two-phase

DNA-O01-80-C-0181
** AFOSR - F49620-81-C-0033.

-- 16



model development. On the other hand, a major difference in these

two programs is the use of an endochronic theory to model plain

concrete in the case of AFOSR and the use of a plastic-fracturing

theory in the case of DNA.

1.4 SCOPE

Although considerable progress toward achievement of the

stated objectives has occured under the current contract, the

complete development and validation of either a single-phase or a

two-phase theory of reinforced concrete is beyond the scope of a

single twelve-month research effort. Indeed, such a task requires a

period of focused and sustained research covering several years.

In order to render the research effort systematic and

manageable, attention was focused during the above mentioned

twelve-month research period on a subset of the tasks outlined in

subsection 1.2. In particular, model development was confined to:

(1) strain-rate independent plain concrete theories and (2) the

steel-concrete bond problem. Data collection and assessment, which

are critical to model validation, and also serves as a precursor to
model development covered, on the other hand, most of the task areas

outlined in subsection 1.2, including strain-rate effects.

1.5 PRESENTATION

The report presentation is divided into seven sections.

Sections 2,3 document the relevant experimental data base for plain

concrete and steel-concrete interaction. As was noted previously,

these are items critical to both model construction and validation.

Section 4 reviews previous constitutive models for plain concrete.

Development and validation of an improved model of plain concrete is

presented in Section 5. Section 6 presents the construction and

validation of an improved model of reinforced concrete. This

section also reviews some additional important experimental data

concerning the direct testing of reinforced concrete. Conslusions

and recommendations are furnished in Section 7.
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1.6 RELEVANCE

This research program attempts to fulfill a critical need in

the defense community for more accurate theoretical descriptions of

reinforced concrete in the inelastic, nonlinear range of material

response. Such descriptions are essential components of numerical

simulations of structural response. Simulations are, in turn,
important elements in system design and evaluation, fragility

studies, and cost trade-off studies for protective facilities.

!18
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SECTION 2

EXPERIMENTAL DATA BASE: PLAIN CONCRETE

2.1 REMARKS

In this section a comprehensive survey is made of the current

data on the behavior of plain concrete. Such information is vital

for model validation purposes. The discussion is partitioned into

uniaxial response (subsection 2.2), biaxial response (subsection

2.3), and triaxial response (subsection 2.4). A substantial portion

of this information is used in the validation of the improved model

of plain concrete presented in Section 5.

2.2 UNIAXIAL RESPONSE

The preponderance of experimental data on plain concrete has

been obtained from uniaxial tests. Much of the data is of little

use for constitutive theory development and verification tasks

because either experimental procedures were not adequately

documented or the generated data base was too small. For example,

many researchers make no mention of testing speeds or specimen end

conditions while much of the data is little more than a list of

observed compressive strengths.

For experimental data to be useful in constitutive theory

research the data must be the result of a carefully executed suite

of experiments. Care is needed because of the large number of

variables involved, Table 2-1. Additionally, concrete response is

extremely complicated. Typical uniaxial compressive monotonic

response is shown in Figure 2-1. Concrete has little strength in

tension. In compression the response is initially elastic and then

becomes progressively nonlinear as internal microcracks propagate.

At a maximum compressive stress, fL, concrete can start softening

and the stress continuously decrease until, at some ultimate strain

't' complete specimen disintegration occurs. Typical cyclic

stress-strain curves are shown in Figure 2-2. Little hysteresis

occurs so long as the stress has never reached fc. On the

softening branch, Figure 2-2b, hysteresis appears more pronounced
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and possibly variable. Currently no well designed and executed

series of experiments has been executed on a set of identical

specimens over the entire uniaxial response spectrum.

Table 2-1

Experimental variables in concrete uniaxial testing

Testing Machine and Pro- Machine Stiffness
cedure Strain versus Load Control

Testing Speed
Servo Controls
Feedback Signal

Specimen Size and Shape
Aggregate Type and Content

Aggregate Size Distribution
Water/Cement Ratio
Curing/Storage History

Machine/Specimen Inter- Load Platen Stiffness
face Interfacial Friction

In the following subsections, equipment and experimental

procedures are first reviewed. The objectives here are (1) identify

problem areas in concrete uniaxial testing, (2) recommend techniques

that will produce reliable stress-strain data, and (3) suggest why

there is so much scatter in the reported data. Subsequently the

experimental data bases for concrete uniaxial monotonic and cyclic,

compression and tension reponse are reviewed.

2.2.1 Testing Machine Considerations

It has been very difficult for experimentalists to design

testing machines that load (or deform) concrete test specimens to

desired stress (or strain) time histories. The principal problems

have been

0 inadequate testing machine stiffness

* unintentional constraining of specimen deforma-
tions.

A. Testing Machine Stiffness.

Figure 2-1 shows that under displacement controlled condi-

tions, concrete exhIbits a long softening branch. This branch
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implies that concrete does not necessarily fail catastrophically

when the stress reaches f . Indeed current ACI guidelines for

structural design account for concrete softening. Also most of the

energy dissipation and material damping in concrete occurs on the

softening branch. However, reliable data on concrete softening is

difficult to obtain because sudden, even explosive, specimen

failures frequently occur when the stress reaches fc. Figure 2-3

shows data obtained by Whitney l) on three different concretes.

The results indicated that uncontrolled specimen failure occurred

when the magnitude of stiffness associated with the concrete

specimen softening branch just exceeded testing machine stiffness.

Whitney suggested that such failures occurred because the testing

machine was not stiff enough to absorb the energy released as the
specimen softened. Hudson, Crouch and Fairhurst, (2) using virtual

work and stability arguments later repeated by Ahmad and Shah,( 3 )

gave a mathematical justification for this reasoning. Experimental

verification was obtained by Sigvaldason -4) who used two testing
7 7machines with stiffnesses of 0.1 x 10 lb/in and 2.0 x 10 lb/in

to test identical specimens. Specimens in the softer machine failed

explosively while those in the stiffer machine did not. Sigvaldason

also noted that the failure stress was insensitive to machine

stiffness.

Several researchers have sought to prevent uncontrolled

specimen failures by artifically stiffening their test machines.

Hsu, Slate, Sturman and Winter (5) placed aluminum channels in

parallel with their specimen so that they were simultaneously loaded

along with the specimen. However the channels had too small a

cross-section and the authors achieved only limited success. Ahmad

and Shah(3 ) placed a case hardened steel cylinder around but not

in contact with their specimens. The cylinders responded

elastically up to an axial strain of 0.006 and were of sufficient

wall thickness that the composite steel-concrete stiffness was not

sufficiently negative as to cause uncontrolled failure. Hughes and

Chapman (6 ) effectively increased the stiffness of their universal

testing machine when they were performing tensile tests by

~Ir, Yr M~R'Nb. -
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simultaneously compressing a steel block placed in the compression

compartment of the machine. From their experiments the authors

showed that concrete can soften in tension.

Concrete post-peak response can also be controlled if

closed-loop servo-controlled systems are used to apply the load.

Hudson, Crouch and Fairhurst (2) discussed such systems at length.

In a closed-loop servo-controlled concrete testing system the

feedback signal (a preselected varying deformation measure that is

characteristic of the experiment) is continuously monitored and its

value compared with that programed into the system. If significant

error is detected, the control system automatically adjusts load

cell pressure so as to minimize the error. For maximum

effectiveness system response time must be sufficiently fast and the

feedback signal judiciously selected. For rock testing, a response

time of 5 msec is adequate since then failure propagation will be

slow; this is well within the capability of many systems and should

hold for concrete also since the failure processes of the two

materials are similar. The optimum feedback signal is that

deformation measured which is most sensitive to the ongoing

failure. In a compression test, where failure results from cracks

parallel to the load, transverse displacement is the best choice

while in a tension test tensile strains or displacements are best.

In summary, the steps necessary to construct an adequate

testing machine and properly control it are known. However few such

testing systems exist.

B. Specimen Constraint Reduction

In uniaxial tension and compression tests, load is transferred

from load cell to specimen through steel load platens that are very

stiff relative to the concrete. Particularly in compression tests

interfacial friction between platen and specimen allows the steel to

inhibit free transverse motion of the concrete and retard internal

microcrack formation in the concrete parallel to the load.

Consequently the specimen is artificially strengthened. This

phenomenon is particularly noticeable in cubes where no point in the

specimen is far from the load platens (RUsch(7 )).

P i Z4

r M



The lateral constraint would not be objectionable if it were

not so uncontrollable. However, as is shown in subsequent sections,

frictional effects cause wide variations in observed failure

stress. Thus platen-specimen friction should be minimized. A

variety of materials have been interposed between platen and speci-

men to achieve this. Jones (8) even tried plywood and rubber.

Plywood had negligible effect but rubber induced premature failure

because the rubber expanded laterally more than the concrete and

induced lateral tension in the concrete. The usual technique for
(5) (9)reducing friction, (Hsu et al. . Hughes and Bahramian ), is

to alternate layers of waxed paper, plastic, teflon or metallic

foils with grease.

The latter authors, in comparing lubricated versus

unlubricated interfaces noted that lubrication

0 reduced differences in concrete strengths
obtained from specimens of different shape

0 resulted in compression specimens failing from
longitudinal splitting, which was indicative of
unconstrained deformation.

2.2.2 Specimen Considerations

The most serious source of scatter in concrete stress-strain

data is the specimen itself. The large number of variables that

describe a specimen are of two types -- concrete mix parameters and

the rest. Sensitivity of experiemental data to mix parameters will

not be discussed since these, in essence, define a concrete's

microstructure and thus fall outside the purview of continuum

mechanics based constitutive theories. The remaining variables are

specimen size, shape and curing history.

In uniaxial tests, specimens range from two inch cubes to 6
in. D x 12 in. L cylinders and larger. Concrete is subject to a

certain randomness in its macroscopic stress-strain response because

its behavior is governed by the initiation, propagation and final

coalescence of internal microcracks. Thus specimen strength
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decreases with increasing specimen volume since, from statistics,

larger specimens will have a larger expected initial microcrack

size. For example, Sigvaldason(4 ) found that 4 in. cubes were 10

percent stronger than 6 in. cubes. Newman and Sigvaldason 10'  have

noted a subtle way that large specimens can effect experimental

results. An inhomogeneous distribution of aggregate and the

accumulation of voids beneath pieces of aggregate close to the top,

horizontal, free surface of the specimen, can result in a nonuniform

specimen strength. This was verified by Cole (11) who tested the

upper and lower halves of a 4 x 4 x 8 in. prism and found the upper

half to be weaker by as much as 56 percent relative to the lower

half. Consequently constitutive data obtained from test specimens

will be most representative of in situ plain concrete when the test

specimens are large; small specimens will tend to overestimate

strength, Sabnis and Aroni 12 , Newman

Three specimen shapes have been commonly used:

0 Cubes

0 Rectangular prisms

* Cylinders.

The most important specimen shape parameter is the specimen

longitudinal-to-transverse dimension ratio LIT. Extensive

experiments indicate that results are insensitive to LIT when LIT is

greater than two; this is reflected in the dimensions of the common

6 in. 0 x 12 in. L cylinder specimen. (Newman and Lachance (14 )

recommended taking L/T > 2.5).

Thus the cube specimen is least desirable because it is overly

sensitive to platen induced end constraints. For example Newman and

Lachance (14 ) found cube compressive strength to be 30 percent

greater than that of cylinders with LIT = 2.5. Sigvaldason (4 )

found 4 in. cubes were 20 percent stronger than cylinders with LIT =

2; Hughes and Bahramian 9), using unlubricated platens found 4 in.

cubes were up to 50 percent stronger than rectangular prisms with

LIT= 2.5
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Tne effects of specimen size and shape are particularly

noticeable in the determination of the compressive softening

brancn. Figure 2-4 shows results for a series of tests on marble

specimens and it is clear that for short specimens, where L/D < 0.5,

almost no softening is observed because of platen constraints. When

L/T > 2 response curves are fairly lose together. When specimen

dimensions were scaled keeping L/T fixed, changes in specimen

response were not as dramatic, indicating that L/T is more important

than absolute dimensions. Of course large specimens are more

difficult to control on the softening branch because they release

more energy than smaller specimens. Thus larger specimens will tend

to failure more rapidly.

The final way that specimens can effect experimental results

is through their curing history. Curing effects are complicated and

are connected with the diffusion of moisture through the concrete

microstructure. Large specimens cure slower and more non-uniformly

than small specimens thus setting up moisture gradients which would

make large specimens more prone to curing induced microcracking.

Mirza, Hatzinikolas and MacGregor (15) and Sabnis and Aroni(12)

noted that specimens cored from massive structures such as dams are

not size sensitive when tested. This is because while the specimens

were curing in situ they did not have large surface areas over which

to lose moisture. Thus for the current application, where the

structures are very large, it is best to make specimens by coring

them from larger specimens. An alternative would be to seal the

specimens against moisture loss/gain. This latter suggestion is

motivated by the work of Sabnis and Aroni who found that sealed

specimens also showed reduced sensitivity to size when tested.

Conclusions

The objectives of the discussion on specimen variables were to

identify reasons why there is so much scatter in the current data

base and to suggest how best to design a specimen that would be most

useful in protective structure modeling. The reasons for the data

scatter are clear-
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* wide differences in mix (not discussed)

0 large number of different specimen sizes and
shapes

0 non-uniformity in specimen curing history.

To overcome these problems it is recommended that:

0 in modeling a particular structure, the
constitutive parameters be for the concrete mix
used to fabricate the structure,

* specimens should satisfy L/T > 2 but not be so
large as to prevent controlled descent of the
softening branch,

* specimens should ideally be cored from the
structure being analyzed or else cured in an
environment that simulates in situ curing.

2.2.3 Concrete Stress and Strain Rate Sensitivity

Discussion of concrete rate sensitivity can be divided into

two parts depending on whether testing lasts long enough for

significant concrete creep to occur. Typical uniaxial tests last

only minutes and for longer tests, specimen creep or relaxation is

possible while for shorter test time, concrete will exhibit a

viscoplastic (i.e., rate enhanced strength) effect. Concrete

strength increases monotonically with increasing strain rate.

Standard tests are performed at a rate of 10-1 in/in/sec (or 35

psi/sec). Mirza, Hatzinikolas and MacGregor, (15) using a modified

form of an earlier result by jones and Richart, (16) stated that

f CR = 0.89 fc35 (1 + 0.08 log10 R) (2-1)

represented the stress rate sensitivity of concrete strength. Here

f c35' fCR were concrete strengths at stress rates 35 psi/sec and
R psi/sec respectively. Eq. 2-1 was valid over the range 10-1 < R

psi/sec < 104 and predicted that fcl and fC1000 were 12

percent lower and higher than fC35" (For R - 1, 35, 1000 psi/sec,

fC35 = 4200 and initial Young's modulus E = 3.6 x 106 psi, the

corresponding strain rates and test durations are i = 2.8 x 10-7

10-5 , 2.7 x 10-4 in/in/sec and 7, 0.2, 0.07 min respectively.)
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More recently Kaplan (17) tested a 20 N/mm 2  (2900 psi)

concrete at stress rates 10- 3  - 10 N/mm2/sec (0.145 - 1450

psi/sec). Results for a 36-day concrete are shown in Figure 2-5.

The data was found to fit the equation

fCR = 0.84 fC35(1 + 0.124 loglOR) (2-2)

which is similar to Eq. 2-1.

High stress rate data have been obtained by Ferrito(18)
( th1yan9Fr (20) (21)

Watstein 1 I Atchley and Furr and Hughes and Watson

Figure 2-6 shows data from the first paper. Stress rate range was

1.8 x 103 - 1.8 x 106 psi/sec which, for an initial Young's

Modulus of 3.6 x 106 psi, corresponded to a strain rate range of 5

x 10-  - 5 x 10- /sec. Thus load rates were much more severe

than in previously discussed papers. Indeed for the highest rate

Ferrito found that strength was 30 percent greater than for the

static loading case. Note that initial Young's modulus also

increased (by 18 percent over static test value). Watstein 19)'

obtained comparable results, Figure 2-7. He tested concretes with

static strengths of 2800 psi and 6300 psi respectively and thus

straddled Ferrito's 4000 psi static strength concrete. Watstein

found concrete to be very rate sensitive with strength increases for

the weaker (stronger) concrete of 55 percent (19 percent) over the

strain rate range 5 x 10-4  - 5 x 10-1/sec. Thus concrete

strength under dynamic load increased more for the weaker concrete,

a trend consistent with Ferrito's data.

Figure 2-7 also shows the data obtained by Atchley and

Furr.( 20 ) Their principal differences with Watstein are that they

found weak concrete to be less strain rate sensitive than strong

concrete and more importantly the rate of strength increase de-

creased with strain rate. However, over most of the explored strain

rate range Watstein and Atcheley and Furr are in reasonable

agreement.
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The preceding authors concentrated on determining strength

strain-rate sensitivity. Nelissen,( 22) Figure 2-8, obtained data

on both strength and softening branch rate sensitivity. Constant

strain and stress rate experiments were performed in pairs with

stress rate chosen to equal that initially induced by the constant

strain-rate experiment.

The stress controlled experiments achieved the higher failure

stress and ended in abrupt specimen failure. The strain controlled

experiments allowed stress to relax once the maximum stress was

achieved so that softening was observed. The data showed a 20

percent strength increase occurred between the slower and faster

stress controlled experiments compared to a 18.7 percent increase

predicted by Eq. 2-1. So Nelissen's results are consistent with

those previously discussed.

The softening branches obtained by Nelissen were at constant
strain rates of 1.7 x 10-7/sec and 3.3 x 10- 5/sec. At a strain

of approximately 0.0035 the two curves met. Rtsch (2 3) in his

softening experiments, Figure 2-9, covered the strain rate range

10-10/sec to 1.7 x 10-5 /sec and observed that stress-strain

curves crossed at € 0.003 with the faster loaded specimens showing

faster softening.

In terms of initial stress rate, the Figure 2-9 curves

correspond to 6.2 x 10', 1, 4 x 10-2 and 2 x 10-4 psi/sec. Thus

the experiments were slow, taking from two minutes to two years.

Strength asymptotically approached a limit for test times greater

than 2 days.

It is reasonable to assume that in all but the fastest of

Rusch's experiments creep and/or stress relaxation was continuously

occurring. In concrete, creep need not be deleterious to structural

integrity. Concrete behavior is governed by progressive

microcracking. If microcracking occurs at a sufficiently slow rate
then mortar creep will tend to close cracks, redistribute stress

concentrations around cracks and generally retard crack growth.

Therefore, as test time shortens, creep will be of lessening
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importance, cracks will not "heal," ultimate failure will occur at

lower strains, and the softening branch will be steeper.

Experimental observation of this phenomena, while suggested by

very slow rate tests, would be difficult to observe at higher rates

because of equipment shortcomings. As strain rate increases, a

specimen sheds load faster on the softening branch and thus has an
increasing energy release rate. This energy is absorbed by the test

equipment but because of inertia in testing machine and

servo-controls, the system would find it increasingly difficult to

accommodate the energy as the energy release rate grew until finally

specimen unloading would become unstable. Figure 2-10 shows exactly

this type of behavior. Cylinders were tested at two strain rates,

32 x 10-6/sec and 10-2/sec. A stable softening branch was

observed for the lower strain rate while for the higher rate

unloading was unstable. From the data it is unclear whether the

behavior is the result of a machine inadequacy or actual material

response.

Conclusions

Conclusions are divided into two categories; those pertaining

to testing and those pertaining to structural analysis and

constitutive theories.

Testing. The preceeding discussion showed that concrete is

rate sensitive over its entire response spectrum. Thus data to be

used in a structural analysis problem should be obtained over a

strain rate range characteristic of the problem. Additionally in

all concrete tests load rate or strain rate should be reported. If

strain softening data is required then testing should be performed

at several constant strain rates in a stiff, servo-controlled

testing machine and, depending on equipment limitations, there will

be a specimen-size/strain-rate envelope beyond which the testing

machine will be unable to control softening.

Structural Analysis. For structural analyses to accurately

simulate concrete response one must model
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* strength strain rate sensitivity

0 softening branch strain rate sensitivity.

No static structural analysis problem is completely time independent

because loads are always applied over a finite time period. The

loads and their application time will translate into some average

strain rate and concrete is rate sensitive at all load rates. Thus

to perform a conservative static analysis the selected, f should

be representative of the strain rates experienced during the loading.

For dynamic structural analyses strain rate effects can

enhance concrete strength 50 percent or more beyond that attained in

a static test. Thus a comprehensive analysis requires a strain-rate

dependent strength model, e.g., viscoplasticity, where both Young's

Modulus and the yield strength are rate sensitive. A conservative

approach, i.e., one that would underpredict strength, would be to

neglect rate effects and use data corresponding to a low strain rate

test.

The most important conclusion concerns the softening branch.

In Figure 2-9 the slope of the softening branch was shown to be very

rate sensitive, even at rates corresponding to static analyses,

because of creep. Physically, softening represents the gradual

performance degradation that concrete can experience and implies

that under suitable constraints concrete will experience controlled,

progressive shedding of load from a failed region into its

surroundings, i.e., failure need not be sudden and catastrophic.

Modeling of softening in finite element codes would be advantageous

since it would provide a physically based mechanism for gradual

failure and would obviate the need for the usual artifices employed

by modelers to simulate failure. If softening were not modeled then

a rational approach to failure would be to reduce stress over a

series of loads increments so as not to propagate a spurious failure

through suddenly overloading neighboring regions. What are totally

incorrect and unconservative are those models that maintain stresses

at their failure level once that level is reached.
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For dynamic analyses it appears that concrete may not soften

under intense loading. Thus in impact analyses the impact zone

would spall and crush rather than soften and it would only be

farther away from the impact zone that softening would occur. In

problems where the entire structure was impulsively loaded,

softening would not need to be considered; concrete would just reach

the failure stress and crush.

2.2.4 Monotonic Response in Compression

Figure 2-11 is a schematic of a typical uniaxial compressive

stress-strain curve for a two-minute concrete test. Initially the

response is linear elastic with tangent modulus of 2 - 4 x 106 psi

and Poisson's Ratio v = 0.2. At 0.3 - 0.4 fc (f being the

uniaxial compressive strength) anelastic response starts and

irreversible strains begin to accumulate. With a further stress

increase the material strain hardens and the stress-strain curve

starts to flatten until at the maximum stress fc the curve is

horizontal. For typical concretes f' is in the range 2 - 10 ksi

and the corresponding strain q is 0.002 - 0.004.

Any attempt to load concrete beyond fc results in explosive

failure. However, in a strain controlled experiment the stress

decreases as the strain increases beyond q and the material

softens. The softening or descending branch at first steepens and

then flattens out. At some final strain cult, uncontrolled

deformation occurs and failure ensues. Strain cult is extremely

sensitive to test and specimen conditions but for well controlled

experiments is in the range 0.008 - 0.02. Figure 2-12 shows

stress-strain curves for typical concretes and indicates that high

strength concretes have a steeper softening branch and fail at a

lower final strain. Stronger concretes are in a sense more brittle

because softening is controlled by creep mechanisms and strong

concretes creep less readily than weak concretes.

Figure 2-13 is a schematic of the stress versus volumetric

strain curve that results dur' ; the ascending part of the Figure

2-11 history. The curve is linear up to about 0.6 f at which
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Figure 2-11. Typical stress-strain curve for concrete
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Figure 2-12. Typical stress-strain curves for concretes.
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stress the rate of volume contraction decreases. At the critical

stress acs' between 0.7 - 0.9 f the curve is vertical and

dilatation or volume expansion commences. For many concretes when

the stress reaches f' sufficient dilatation has occured that the

volume is greater than at the beginning of the experiment. At the

critical stress the instantaneous Poisson's Ratio equals one half

and increases as dilatation increases. Figure 2-14 shows two

typical sets of data for volumetric strains.

Rusch (23 )  showed, Figure 2-15, that the critical stress

corresponded to the concrete sustained load strength. R~sch

preloaded specimens of the same concrete in compression and then

recorded strain-time histories. In Figure 2-15 each curve is for a

fixed elapsed time and gives accumulated strain in that time for a

given stress. Stresses are normalized to the concrete strength

determined from the usual two minute compression test. RUsch found

that concrete would support indefinitely any stress below acs

while for stresses above the critical value failure always occurred

given enough time. Thus acs represents the onset of an unstable

progressive fracturing process which culminates in failure. For a <

acs concrete would creep and internal stresses would be

redistributed until a final equilibrium configuration was achieved.

From Figure 2-15 it can be concluded that for deformations lasting

less than two minutes creep effects will be negligible and since, in

this report, none of the extreme load environments involves

extensive periods of time, creep phenomena are not explicitly

considered.

Conclusions

0 Concrete uniaxial monotonic compressive
response is totally different from metals.

0 The stress acs at which dilatation starts is
the sustained load strength. Stress Ocs
signals the onset of an internal instability
which ultimately results in failure.

0 If at the end of any structural analysis
residual stresses are greater than 0.7 f ,
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Figure 2-13. Volumetric strain £ v for uniaxial,
monotonic, compression test.
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then the structure must be assumed unstable
and, if enough of the structure is highly
stressed, in damage of collapse.

9 Creep effects are unimportant for short time
phenomena.

2.2.5 Cyclic Response in Compression

Protective structures may, under certain loading conditions,

be subjected to several loading-unloading-reloading cycles.

Consequently, in this subsection a critical evaluation is given of

the current understanding of concrete uniaxial cyclic response.

Shah and Chandra (27) performed a fatigue study on plain

concrete. Samples were cycled in uniaxial compression in the ranges

0.1 fl to m f' where a equalled 0.6, 0.7, 0.8 and 0.9. In order
ct

of decreasing cycle size the authors found the number of cycles to

failure was 17, 82, 1000 + , 1000 +. Thus within the framework of

practical finite element analyses the possibility of a fatigue

failure can be discarded since it is impractical to track stresses

around more than a few loading-reloading cycles.

The pioneering work on compressive cyclic loading was

performed by Sinha, Gerstle and Tulin (28) and typical results are

shown in Figure 2-16.

The figure indicates that considerable creep was occurring at

cycle peaks i.e., at the start of unloading strain continued to

increase giving the cycles a rounded appearance. If there had been

no significant creep or relaxation, the start of unloading would

have made a sharp corner as the strain instantaneously changed from

increasing to decreasing. The authors noted that spontaneous (i.e.,

uncontrolled) unloading and specimen cracking occurred at points of

vertical tangency on the cycles. Two important finds were

0 average stiffness over a cycle decreased as
cycles accumulated.

* The envelope curve traced out by cycle peaks
corresponded well with the monotonic stress
strain curve.
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Cycle-sensitive stiffness degradation implies that concrete

exhibits elastic-plastic coupling i.e., the instantaneous elastic

unload-reload modulus changes as the plastic strain increases.

Coincidence of envelope and monotonic loading curves is an

indication that the failure surface in multiaxial stress space might

be unique and not sensitive to stress-strain history. Finally

Figure 2-16 shows that concrete can exhibit considerable material

hysteresis.

The findings of Sinha, Gerstle and Tulin have been

qualitatively verfied by Karsan and Jirsa(29) and more recently by

Cook and Chindaprasirt.(3 0"  Figure 2-17, from the latter authors,

shows that maximum stresses under cyclic load do indeed follow the

monotonic loading curve. Note that the authors achieved a sharp

unloading and that for cyclic loading along the softening branch the

unload-reload behavior is nonlinear.

Discussion

Under uniaxial compressive cyclic loading concrete is

* hysteretic

0 stiffness-degrading

* nonlinear in its unload-reload behavior.

Uniaxial mathematical models, based on the above data, have

been developed and do exhibit these features. However, the theories

have not been implemented in the analysis of protective facility

structural response. Thus, currently, no definitive conclusions can

be drawn regarding the importance of including cyclic stress-strain

effects in stress analyses. In typical structural analyses concrete

is assumed to be

. nonhysteretic

* nonstiffness degrading

* linear in its unload-reload response.
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The first assumption is conservative since it omits an energy

dissipation mechanism and thus would lead to an overestimate of

structural deflections and damage. The second assumption is

unconservative since it results in models whose stiffness is never

degraded. As a consequence predicted deflections are less than

those that would be obtained if stiffness degradation was included.

The most important shortcoming of the data on which the above

remarks are based is the strain rate at which the experiments were

performed. Cycle times were on the order of minutes while the

natural frequencies of concrete structures are approximately 1 - 10

Hz. Thus what is needed are cyclic tests which are an order of

magnitude faster than those discussed here. Since concrete is

strain rate sensitive, results from these tests might differ

significantly from those presented here.

2.2.6 Tensile Response

The least explored region of concrete uniaxial stress-strain

response is its behavior in tension. In structural design it is

usual to assume that concrete has no tensile strength and that all

tensile loads are carried by reinforcing steel. However, for large

structures, such as protected facilities, damage will at first be

localized and then subsequently propagate. Damage propagation will

be in the form of cracking and tensile cracking will require a

continuum understanding of concrete tensile response.

An accurate understanding of concrete tensile response can

only come from the performance of carefully controlled and

instrumented experiments. Thus the cylinder splitting or Brasilian

test is not an appropriate test because an inhomogeneous stress

state is induced in the specimen. Similar remarks hold for beam

type tests. Acceptable data come only from specimens loaded in

. testing machines such that a gage section of the specimen is in a

homogeneous state of stress and strain. The most comprehensive

experimental study of this type was performed by Hughes and Chap-

man(6) whose results are shown in Figure 2-18. The testing

machine was discussed in subsection 2.2.1 and the tests were
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performed at a constant strain rate of 6.7 x 10-8/sec. The figure

shows that concrete is extremely weak in tension. For most

concretes, uniaxial tensile strength ft is in the range of 200 -

800 psi or 8 - 10 percent of f'. Strains at maximum stress are 5
c

x 10-  - 2 x 10-  Surprisingly if concrete is sufficiently

well constrained it will strain soften and, depending on the

concrete, sustain loads until strains reach 0.0002.

Parallel to its compressive behavior, concrete has a sustained

load strength in tension. Al-Kubaisy and Young( 31)  and

Domone(32) have shown that concrete will support loads less than

0.6 - 0.8 fi indefinitely but will finally fail under higher

loads. Failure results from microcracking induced creep. Figure

2-19 shows isochronous tension stress-strain curves for a typical

concrete. The curves are similar to those obtained by Rusch for

compressive response.

Discussion

The above data only describe the monotonic tensile response of

c;2 crete at essentially a single strain rate. Nothing is known

about either the strain rate sensitivity or the cyclic behavior of

concrete in tension. Although concrete has little capacity for

supporting tensile loads, its tensile behavior cannot be ignored.

Tensile failure and how concrete redistributes load after reaching

the failure stress will control how fast cracks propagate and how

fast a structure's load carrying capacity is destroyed. From the

discussion on compressive behavior it is probable that concrete

tensile response is strain rate sensitive and that strength is

enhanced and softening branch steepened as strain rate increases.

Current data are for very low strain rates and so no data exist on

which to base constitutive models for dynamic structural analyses.

Under strain control concrete in tension would probably exhibit

cyclic behavior similar to that shown in Figure 2-17 for

compression. This possibility has not been explored and its

importance cannot be assessed.
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50



100

* E
80 80

o~ F ra cture.j Limit_
0
(A

E2 60'

4-3

40

V)

V.)

0 20 40 60 80 100

STRAIN x10

Figure 2-19. Isochronous tension stress-strain curves.

51



2.3 BIAXIAL RESPONSE

2.3.1 Remarks

Biaxial loading corresponds locally to a state of plane stress

wherein only two principal stresses are non-zero. The biaxial

stress state is called biaxial tension, biaxial compression or

compression-tension accordingly as the principal stresses are both

positive, both negative or of different signs, respectively.

Most biaxial experiments are performed on plate-like specimens

where one dimension, the thickness, is much less than the other

two. The specimen is loaded around the edges by forces in its

plane. For biaxial tension failure is similar to uniaxial tension

and occurs from a single thru-thickness crack perpendicular to the

direction of the maximum principal stress. For biaxial compression

failure occurs from a single crack in the mid-surface of the plate;

the crack does not meet the free unloaded surfaces of the plate.

Finally, for the case of compression-tension, the failure mode is a

mixture of the two previous modes depending on the relative

magnitudes of the compessive and tensile loads.

Slate and his co-workers (33-3 5) believe that under biaxial

compression failure is governed by tensile strain in the plate

thru-thickness direction while Kupfer, Hilsdorf and Wsch(36 )

believe that the biaxial failure modes imply that any realistic

failure criterion must depend upon all three principal stresses and

not just the two extreme stresses.

Multiaxial experiments on plain concrete were first performed

around the beginning of the century but it has only been in the last

thirty years that generally accepted data has been published. Many

different shapes and sizes of specimens and many different testing

machines have been used to obtain biaxial stress-strain data. The

objectives of all tests have been to subject specimens to known

homogeneous, stress histories and to then record failure loads

and/or strain histories. However, occasionally, difficulties

associated with experimental procedures and the complexity of plain
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concrete response have resulted in researchers unknownlingly not

achieving their objectives. In the following is presented a

discussion of specimen types, and testing machines and their affect

on experimental results. Subsequently, data from biaxial

experiments are presented.

2.3.2 Biaxial Test Specimens

One reason for the great difference in experimental results

obtained by different researchers is the wide variety of test

specimens used; this can be seen in Table 2-2. Biaxial test

specimens fall into three main categories

0 plates

0 cubes

e hollow cylinders.

'Plate specimens are by far the most popular because they are

easy to fabricate and minimize frictional constraints between the

specimen edges and the load platens. (Frictional effects reduction

through platen design will be discussed in more detail in subsection

2.3.3.) Weigler and Becker (4 1'4 2 ) tested a series of prisms whose

dimensions varied from 10 x 10 x 10 cm to 10 x 10 x 2 cm in uniaxial

and biaxial compression (01 = 02) and found that specimen

strength decreased with size because of reduced platen constraint,

Figure 2-20. Similar findings have been reported by

Fumagelli. (50 )  Iyengar, Chandrashekhara and Krishnaswamy (44) in

their biaxial compression experiments used cubical specimens and,

because of friction over the large contact area between the

specimens and load platens obtained biaxial compression strengths

three to four times what is now considered correct.

Hollow cylinders have been used in compression-tension and

compression-torsion experiments. However, the specimens are diffi-

cult to fabricate with uniform wall thickness. Also, it is impos-

sible to obtain a homogeneous stress field in the specimen. This is

because cylinder wall thickness must be at least three times the

maximum aggregate dimension to obtain a reasonably homogeneous
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Table 2-2

Specimen types used in biaxial tests

Specimen Aggregate

Authors Ref Type Dimensions (max)

Atan and Slate (37) Plate 5x 5x0.5 in. 0.75 in.

Kotsovos and Newman (38) lt OxlOx4 in. 0.5 in.

Kupfer, Hilsdorf + Rusch (36) of20x20x5 cm 1.5 cm

Liu, Nilson + Slate (35) 5x 5x0.5 in. Model aggregate

Robinson (39) lOxlOx4 in. 0.187 in.

Vile (40) lOxlOx4 in. 0.75 in.

Weigler + Becker (41,42) 1 OxlOx2.5 cm 0.7 cm

Andanaes, Gerstle + Ko (43) Cube 4 in. --

Bertacchi, Berlotti +
Rocci (38) 10 cm 1.25 cm

Iyengar, Chandrashekhara
+ Krishnaswamy (44) 4 in. , 6 in. 0.375 to 0.75 in.

Linse (38) 10 cm 1.25 cm

Schickert (38) 10 cm 1.25 cm

Taylor (38) 2 in. 0.5 in.

Traina + Zi mmerman (38) It3 in. 0.5 in.

Bresler + Pister (45,46) Cylinde~a) 9x1.5x30 in. 0.5 in.

Goode + Helmy (47) It8x1 x26 in. 0.375 in.

Isenberg (48) of6.4x.84x10.2 cm 0.47 cm

Rosenthal + Glucklich (49) It30.5x2.75x35 cm 1.25 cm

*(a) Dimensions are outside diameter, wall thickness and gage length respectively.
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specimen. Yet when wall thickness is greater than ten percent of

the cylinder radius the stress state becomes significantly inhomo-

geneous thus making it impossible to accurately define stresses and

strains in the specimen.

In summary the preferred biaxial test specimen is one which,

in conjunction with its test machine, minimizes frictional effects

and stress-strain inhomogeneities.

2.3.3 Biaxial Testing Machine Considerations

The objectives of all biaxial experiments to date have been to

obtain data on concrete monotonic strength and stress-strain

relationships. No data has been published on either cyclic response

or post-peak softening behavior. Therefore, testing machine

stiffness is not of primary concern. Rather, for cube and plate

specimens attention has focused on transferring load to the specimen

with a minimum of friction between the load platens and the specimen

since friction induces lateral constraint on the specimen resulting

in artificially high levels of concrete strength.

For cubes and plate-like specimens there are three major load

platen designs:

0 steel plate

0 brush bearing

* fluid-cushion.

The steel plate platen is a steel plate thick enough not to be

distorted during a test. When no lubricants are used between steel

and concrete, high levels of friction are present. Friction has two

effects on experimental results. First, it inhibits free lateral

expansion and contraction in the plane of the platen face thus

artificially stiffening the specimen. Secondly, in biaxial com-

pression loads applied through platens in one direction are

partially transferred to, and hence supported by, the load platens

orthogonal to them. The combination of these effects can lead to

totally erroneous results as can be seen in Figure 2-21. In Figure
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Figure 2-20. Uniaxial and biaxial compressive
strengths versus prism thickness,
d -W = uniaxial strength for d
=100 mm.
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*Figure 2-21. Comparison of failure surfaces for biaxial
compress ion.
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2-21 data obtained by Iyengar, Chandrashekhara and Krishna-

swamy (44 ) using unlubricated steel plate platens are compared with

data from Kupfer, Hilsdorf and RUsch (36 ) who used the brush

bearing platens described below. Friction can be reduced by

interposing layers of material between the load platens and the

A specimen. Table 2-3 taken from Nelissen (51 ) shows how different

A levels of lateral constraint can be obtained and that it is possible

to practically eliminate friction. Thus acceptable plate platen

arrangements can be designed for compression testing; however, the

designs cannot be modified to transmit tension to a specimen.

Coffcit Table 2-3

Coefficients of friction between load platens and
specimens for various lubricants

(Source: Nelissen( 51))

Coefficient
Lubricant of Friction

None 0.46 - 0.65

Graphite powder 0.28 - 0.31

Grease 0.15 - 0.24

0.05 mm teflon film and
silicon grease 0.018 - 0.023

Rubber films and silicon
grease 0.008 - 0.012

The brush bearing platen was first developed by

Kijellmann(52) for soils testing and was later modified for

concrete testing by Hilsdorf.(53  As its name suggests, the

surface of the platen resembles a brush. The space between the

"bristles" allows the specimen to expand and contract freely. Also,

by bonding the bristles to the specimen, tensile loads can be

applied. The brush platens used by Kupfer, Hilsdorf and Risch (36)

were steel filaments of cross-section 3 x 5 mm and with 0.2 mm

separation. The free length of the filaments varied from 65 mm to

105 mm with the shorter bristles being used on higher strength
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concretes. The authors were able to maintain flatness of the brush

bearing surface to within 2 x 10- 3 mm and no filament buckling was

observed during loading. More recently brush bearing platens have

been used by, Slate and his coworkers. ( 3 3 ' 3 5 )  Kupfer, Hilsdorf and

R.sch performed two series of biaxial compression experiments, on

three different types of concrete. In one series brush bearing

platens were used and in the other steel platens. Resulting average

biaxial failure surfaces are shown in Figure 2-22 where strength

enhancement arising from the steel platen's constraining action can

be clearly seen.

The third type of load platen for cubes and plates is the

fluid cushion pioneered by Ko and Sture(54) and applied to con-

crete by Andanaes, Gerstle and Ko. (4 3 )  Here load is applied to

the specimen through fluid filled membranes pressed against the

specimen. The membrane possesses little stiffness and thus does not

constrain specimen lateral motion. By inserting a steel plate

between the membranes and the specimens, the authors obtained higher

biaxial compression strengths than were obtained without the plates,

Figure 2-23. This again demonstrates how friction between specimen

and stiff load platens increases measured strength. As with the

steel load platens the fluid cushion cannot be modified to load

specimens in tension.

For hollow cylindrical specimens frictional constraints have

not usually been of concern since sufficiently long specimens have

been used, so that the specimen central section was free of end

effects. By applying compressive and torsional loads at the

cylinder ends states of compression-tension have been achieved and

reliable results obtained.

Rosenthal and Glucklich (4 9 )  attempted to obtain biaxial

compression data using hollow circular cylinders whose axes were

vertical. The cylinders were placed inside a rubber bladder which

in turn was inside a thick steel tube. The clearance between

concrete and steel was one inch. Biaxial loading was achieved by

simultaneously pressurizing the bladder and applying vertical end
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loads. The biaxial, compression, failure envelope obtained is shown

in Figure 2-24, and it can be seen that for equi-biaxial compression

(a1 = a2) stress levels are twice the uniaxial compressive

strength rather than the usual 1.2. The reasons for the increased

strength level are not clear but are probably related to friction

between the bladder and the specimen. As evidence of this it can be

noted that without an applied vertical load the cylinder failed from

a single horizontal circumferential crack, a failure mode usually

related to vertical tension. Tension could have been introduced

into the specimen if pressure induced membrane streses in the top of

the bladder were gradually transferred to the cylinder through

friction so that away from the ends of the cylinder there were

minimal membrane stresses in the bladder.

It is clear from the preceding discussion that great care must

be taken to ensure no extraneous stresses are introduced that give

spurious results. The most promising general purpose load platen

appears to be the brush bearing type because it can be used in both

tension and compression and is free of frictional effects.

2.3.4 Stress-Strain Results

The data for the stress-strain response under monotonic,

biaxial loading up to failure appears to be reasonably complete for
'radial' or 'proportional' loading where the stress components are

maintained at a constant ratio throughout the experiment. The

discussion is divided into three parts corresponding to biaxial

compression, compression-tension and biaxial tension.

A. Biaxial Compression

Figure 2-25 summarizes results for uniaxial and equi-biaxial

compression obtained by Weigler and Becker(4 1)  in 1961 using

plate-like specimens of dimensions 10 x 10 x 2.5 cm. All results

are for the same concrete whose uniaxial compressive strength was

6700 psi. Compared to the uniaxial response the equi-biaxial

response exhibited more nonlinearity and larger stresses and

strain. However, both responses did have an increasing volumetric
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strain prior to failure. Since concrete under biaxial comprssion

does not exhibit surface cracking, and since concrete aggregate

remains linear elastic, the nonlinearity arose from relative motion

of the aggregate and mortar and possibly from nonlinearity in the

mortar response. Larger obtainable stresses and strains relative to

uniaxial response are to be expected for biaxial loading because the

multiaxial stress state inhibits cracking which is the ultimate

failure mode.

*. The most comprehensive study of concrete biaxial response was

1 performed by Kupfer and his co-workers(36,55 - 59) and is reviewed

by Dei Poli. (60 )  Figure 2-26 shows typical results taken from

Reference. (3 6 )  In Figure 2-26a are compared the stress-strain

response for three proportional loadings. The most surprising

* result is that the maximum obtainable stress did not occur for

equi-biaxial compression but instead for a stress ratio al/a2 =

- 1/- 0.52. Again it is clear that lateral expansion (c3) was

greater for biaxial compression compared to uniaxial compression.

Figure 2-26b shows that, in agreement with intuitive expectation,

volumetric compression was greater for biaxial compression than for

uniaxial and in agreement with Weigler and Becker (4 1 )  the

volumetric strains under biaxial compression started to increase

just before failure.

On each curve in Figure 2-26 are marked four points. The

elastic limit corresponded to the first deviation of response from

linearity. As the degree of biaxiality of the compressive loading

increased the linear elastic range increased, thus lending credence

to the idea that biaxial load constraint inhibits initiation of

additional microcracks. The inflection point corresponded to the

stress-strain state where the volumetric strain rate changed sign

and marked the beginning of the slowing down of volumetric

shrinkage. At the inflection point a new deformation mechanism was

introduced that grew as the load increased and counteracted the

compressive actions of the applied loads. This new mechanism was

major microcracking which occurred in the plane of the applied
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loads. The sustained load strength of concrete probably lies

between the inflection point and the point of minimum volume. At

the minimum volume point microcracking had become so wide spread

that it swamped any tendency of the specimen to contract. The

* maximum stress point indicated that under biaxial loading concrete

has a softening branch akin to the uniaxial response. However,

Kupfer did not examine this possibility in detail.

Figure 2-27 is taken from a study by Liu, Nilson and

Slate(35) who used a model concrete. Their specimens were 5 x 5 x

0.5 inch and contained circular inclusions of various diameters and

randomly distributed. As the magnitude of a2 increased relative

to a, the corresponding strain E2 went from expansion to com-

pression. At a2 = .2al , £23 was essentially null for most of

* the load history suggesting that for the concrete used, v = 0.2. In

consonance with the findings of Kupfer, Hilsdorf and R*Osch (36 ) the

maximum stress occurred for a2/a1 = 0.5.

B. Tension-Compression.

Kupfer and his co-workers(36'55-59 ) used their brush bearing

platen testing machine to obtain biaxial compression-tension data.

Sample results are shown in Figure 2-28. It can be seen that as the

tension component increased, attainable levels of stress and strain

decreased and when the tensile stress had grown to twenty percent of

the compressive stress, strength was only thirty percent of the

uniaxial strength. Also, the response exhibited increasingly less

nonlinearity as the tensile component increased, indicating a

a... transition to a brittle, cleavage-type of fracture.

C. Biaxial Tension

There is very little data on biaxial tension. Figure 2-29 is

taken from Kupfer, Hilsdorf and RUsch (36 ) and shows that as the

loading changed from uniaxial to equi-biaxial tension, the specimen

stiffened and obtainable levels of strain decreased. Also, the

maximum obtainable stress levels were essentially independent of the

stress ratio 01/a2 implying that for biaxial tension, strength
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is governed by a maximum stress component criterion derivable from

uniaxial test results. Finally note that the response up to failure

was essentially linear elastic.

*2.3.5 Biaxial Strength Results

Most biaxial experiments on concrete have attempted to

determine the strength of concrete under biaxial loads and many

results have been obtained. The objective of such tests was to

determine biaxial stress levels necessary to cause concrete to

fail. In principal stress space, biaxial stresses lie on planes

where one principal stress is null. On such a plane, stress

combinations at failure define a strength or failure envelope. In

the following only data which is considered reliable is presented.

Also, most results refer to short-term loading.

Kupfer, HisofadRusch (3)published results for three
different concretes whose uniaxial compression strengths ranged from

2700 psi to 8350 psi. The data was obtained from proporticoal load

histories using brush bearing platens so that frictional effects

were minimized. Strength (i.e., failure) envelopes in terms of

principal stresses 01,02 are shown in Figure 2-30 where stresses

have been normalized with respect to f' for each concrete. From

Figure 2-30 it is clear that the normalized strength envelopes are

essentially insensitive to concrete uniaxial strength. The authors

found that biaxial compressive strengths were greater than uniaxial

and that concrete could sustain only small tensile loads when

biaxially stressed. For equi-biaxial compression failure occurred

when ai = a2 = 1.16 f' while for the load trajectory a,
2a2 failure occurred at a, = 1.27 fc-

Gerstle et al., (38) conducted a comprehensive test program

designed to identify the sensitivity of biaxial compression failure

surface to test technique. Seven laboratories in four countries

performed tests on specimens cast from the same concrete mix. The

anticipated experimental variables were load platen design and

specimen shape; specimen moisture loss was an uncontrolled variable

which for standard 3 in. x 6 in. cylinders, varied from 0.2 to 2.7
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percent. The five types of load platens employed in the tests,

(along with their two letter identifying codes), are shown in Figure

2-31. In Figures 2-32 and 2-33 are given the failure envelopes

found by the various test techniques.* The principal observation is

that specimens tested with unlubricated solid steel load platens

(denoted by DP) gave higher strengths than specimens tested with

fluid cushion (FC), lubricated (LP) and brush bearing (BR) platens.

Also, there is much more scatter among the results obtained from dry

platens than among the remaining results.

Several authors have focused their attention on the

tension-compression quadrants of the biaxial stress plane. Bresler

and Pister (4 5,46) and Isenberg (48) performed compression-tension

experiments on hollow circular cylindrical specimens. Isenberg's

results have also been reported by Johnson and Lowe. (61)  Based on

their experimental results Bresler and Pister proposed the failure

surface shown in Figure 2-34. From the figure it can be seen that

in the compression-tension region strength is primarily controlled

by the tensile stress component. The slight increase in attainable

tensile stresses indicated in Figure 2-34 for moderate levels of

compressive stress levels is not necessarily real but may be only an

artifact of the curve fit employed by Bresler and Pister.

The results in Figures 2-35 and 2-36 are also for the biaxial

compression-tension failure surface normalized to fC. When the

expanded tension scales are taken into account, the results are

comparable to those of Bresler and Pister. In Figures 2-35 and 2-36

both sets of authors believed the slight 's' shape to the failure

surface might be real and indicated that the compression-tension

quadrants were transition zones between the gradual crushing failure

of uniaxial compression and the sudden cleavage failure of uniaxial

tension. Figure 2-35 is a magnification of the compression-tension

* Acronyms BAM, ENEL, ICL, TUM NMSU, UCD and CU, which identify the
performing laboratories, are defined in Reference 38.
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and biaxial tension regions of Figure 2-30 and raises the possi-

bility that the failure surface is sensitive to f'. In FigureC

2-36 the wide scatter between data obtained by various authors is

evident.

The only systematic determination of strength in the biaxial

tension quadrant was performed by Kupfer, Hilsdorf and Rusch. (36 )

Results are shown in Figure 2-35 and indicate that failure occurred

whenever a stress component reached the uniaxial tension strength.

Very little data exist on the sensitivity of failure surface

definition to differences in the path traversed in stress space from

zero stress to failure. Taylor and Patel (62) subjected both wet

and dry concrete cubical specimens to two types of stress history.

For the first type radial loading was used. In the second type a

sequential loading was employed where first one principal stress was

incremented and then subsequently held fixed while the other

principal stress was increased from zero until failure occurred.

The wet specimens were cured in water and kept moist during tests by

a damp cloth while the dry specimens were stored in a normal

laboratory environment for two weeks before testing. Results

obtained are shown in Figure 2-37 and 2-38. For wet specimens the

average strength obtained by sequential loading was greater than

that for proportional loading. For dry specimens average strength

for proportional and sequential loading were approximately equal.

Thus the evidence suggests that under the right conditions it might

not be possible to define a unique failure surface for biaxial

stress states.

2.3.6 Experimental Support for Plasticity Theories of Biaxial
Response

Constitutive theories for concrete biaxial response are

sometimes developed using the concepts of conventional plasticity.

In these theories an initial yield surface in principal stress space

is postulated. The yield surface is closed, contains the zero

stress state and has a shape similar to the failure surface. For

all stress states inside the initial yield surface, concrete

response is elastic. As stress component magnitudes increase, the
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stress state reaches the initial yield surface and the constitutive

model predicts that on further loading some irreversible damage

occurs in the concrete. With continued loading the yield surface

I expands in all directions so that the increasing stress state is

always on the yield surface. If the stress should subsequently

decrease, the yield surface maintains its size and position and the

unloading response is elastic as is the response along all stress

trajectories inside the yield surface. Additional damage to the

concrete occurs only if the stress again reaches the yield surface

and expands the yield surface farther.

Conventional plasticity theories also require that for all

points on a yield surface the material secant modulus be the same.

Experimental evidence to support plasticity models is

limited. Oei Poli (60 ) has reported experiments by Kupfer and his

co-workers, Figure 2-39. In the figure E is the initial concrete

secant modulus and the curves, plotted in principal stress space,

are curves of constant secant modulus. As stress increases, the

secant modulus decreases until at failure it is thirty percent of

its initial value. The small shaded area represents an elastic

region whose perimenter has similar shape to that of the failure

surface and could serve as an initial yield surface. The remaining

curves of constant secant modulus also are similar in shape to the

failure surface and could serve as subsequent yield surfaces.

Additional biaxial test data have been published by

Vile,(40 ) Figure 2-40. In the figure the failure or 'ultimate'

surface is plotted in principal stress space along with a

'discontinuity' surface. The discontinuity surface, whose shape is

similar to the failure surface, represents a 'critical point' where

'there is a marked change in the mechanical properties of the

material and more severe cracking takes place which leads eventually

to failure. ' Thus the discontinuity surface does not represent

initial yield but rather some subsequent level of damage. However
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the surface is compatible with plasticity theory in that when the

yield and discontinuity surfaces coincide, all points on the yield

surface would experience the same 'marked change in material

properties.'

2.3.7 Issues

The qualitative response of plain concrete under monotonic,

biaxial loading up to failure is well understood. The principal

shortcoming is the lack of agreed upon experimental procedures so

that different laboratories performing the same tests on specimens

fabricated from the same batch of concrete yield the same results.
The international program reported by Gerstle it al.,( 38) is a

necessary first step and what are now required are efforts to

reconcile differences in results followed by development of

generally agreed upon testing procedures.

The most serious inadequacies in the experimental data base

are results on

* biaxial cyclic stress-strain response

0 biaxial post-peak softening behavior

* strain rate sensitivity

* microcracking induced anisotropy.

All sets of data are needed before it is possible to predict the

response of reinforced concrete protective structures for load

environments of interest to the defense community.

2.4 TRIAXIAL RESPONSE OF PLAIN CONCRETE

For most analyses of protective structures, three-dimensional

constitutive theories of concrete are required. When a theory is

first formulated the developer validates it by fitting the theory to

existing data. The uniaxial and biaxial data discussed in Sections

2.2 and 2.3 have traditionally formed the major portion of that data

base. However, in the last Few years, reliable triaxial data has

been published. The objective of this section is to review this
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triaxial concrete data. As in the previous section presentation of

triaxial data is prefaced by discussions of concrete micromechanics

and experimental procedures so that greater insight into the data

can be achieved.

2.4.1 Remarks on Micromechanics, Variability

-p Very little research has been done on the micromechanical

behavior of plain concrete under triaxial loading and what data

there are appear contradictory. Krishnaswamy, (63)  subjected

four-inch cubes to various levels of triaxial compression, sectioned

the tested specimens and examined them for microcracking.

Krishnaswamy's principal observation was that the presence of all

around compression retarded microcrack growth. For example, under

uniaxial compression, cracks at the aggregate-mortar interface

started to grow at a compressive strain of approximately 0.0005,

while for triaxial compression, with minor compressive stresses

*approximately ten percent of the major stress, interface cracking

did not occur until the major compressive strain reached 0.0018.

Krishnaswamy also noted that at failure the amount of microcracking

induced by either uniaxial or triax compression was approximately

the same.

Palaniswamy and Shah (64 ) tested 3 in. D x 9 in. L concrete

cylinders. Most of their results were for moist concrete with a

uniaxial compressive strength of 2.3 ksi. In their tests the

authors applied axial and lateral stresses up to 24 ksi and 9 ksi

respectively. The loading path was always one of hydrostatic

loading followed by additional axial loading with the lateral

pressure fixed.

The results of Palaniswamy and Shah fell into two distinct

regimes according to whether the maximum lateral stress at failure

satisfied either alat S 4 ksi or Olat > 6 ksi. For low lateral

pressures, post-test examination showed:

0 surface bulging and cracking increased as
Olat increased
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0 failure was of a splitting or tensile mode
similar to uniaxial failure

* compressive deviatoric stress components were
greater than the hydrostatic component

- maximum longitudinal strain increased with
a1 at

* bond cracking between aggregate and mortar
increased with 0lat

0 ultrasonic pulse wave velocities in both the
longitudinal and lateral directions were
increasingly attenuated as alat increased.

Figure 2-41 shows the sensitivity of pulse velocity and total

bond crack length to maximum lateral confining pressure. For high

maximum lateral pressures (alat a 6 ksi) an entirely different

behavior was exhibited:

0 little or no post-test surface bulging or
lateral surface distress

0 failure was by mortar and aggregate crushing

* the hydrostatic stress was greater than the
deviatoric components

* lateral strains were always compressive

* bond cracking diminished as alat increased

0 ultrasonic pulse wave velocity attenuation
decreased as alat increased.

Additionally the authors also tested specimens that had been

previously loaded to a hydrostatic stress of 8 ksi and found no

deterioriation in either stiffness or strength.

The results of Palaniswamy and Shah clearly showed the

sensitivy of concrete failure mode and load to the level of imposed

hydrostatic stress, a result reflected by the entire triaxial data

, base. Whether the results of these authors are in agreement with

those of Krishnaswamy is not clear since the two experimental

programs used entirely different specimens and load paths. Both

contributions indicate that triaxial stress states inhibit bond
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crack initiation. However, the first paper concludes that at

failure the amount of bond cracking is almost always the same while

the second paper indicated bond cracking at failure first increased

and then decreased as the magnitude of stress components increased.

The dual natures of concrete triaxial response and failure

mode indicate the presence of competing influences. If the stress

has a large deviatoric component then significant tensile-deviatoric

stress exists thus encouraging a splitting failure. At low

hydrostatic pressures, the presssure merely holds the specimen

together longer thus permitting higher levels of cracking. At

4higher levels of pressure, pressure actively inhibits cracking thus

lending credence to the idea that aggregate-mortar interface bond

failure is in shear, the failure shear stress level being controlled

by hydrostatic pressure.

Plain concrete strength is conventionally characterized by its

uniaxial strength fc. For biaxial compressive stress states the

maximum obtainable stress is approximately 1.3 f and so fc c

still characterizes concrete strength and the size of the equipment

used in biaxial tests is essentially unchanged from (though more

complicated than) that used in uniaxial experiments. For triaxial

testing the same is not true. Under triaxial compression concrete

can support stresses larger than four times f' because of

constraints imposed on the specimen by the hydrostatic component of

loading. However, in most triaxial experiments maximum stresses are

much smaller than this because of equipment size, and concomitant

cost constraints. For example, to achieve stresses five to ten

times fc on four-inch cube specimens of 5 ksi concrete would

require 500,000 - 1,000 000 lb actuators and sufficiently strong

frames to support them. Consequently it is usually practical to

explore only a limited portion of the concrete, triaxial stress,

failure envelope. The objective of the following subsections is to

show the variability that exists in concrete triaxial testing

techniques so that the scatter seen in data can be partially

explained in terms of test parameter differences.
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2.4.2 Triaxial Test Specimens

In triaxial tests two specimen types are used:

0 solid cylinders

* cubes.

Cylinders are used in "conventional" triaxial testing where two of

the three principal stresses are always equal. The axial or

longitudinal stress is one principal stress while the other two

principal stresses equal the lateral or radial load applied to the

specimen's curved, lateral surface. All data from a conventional

triaxial test can be plotted on a single plane, the Rendulic plane,

in principal stress space. Further it is impossible to subject the

lateral surface to tension. Thus only a limited amount of data can

be obtained from cylinders.

The cube used in "true" triaxial tests, is a more versatile

specimen since all three principal stresses can, potentially, be

varied independently and tensile stress states can in principle, be

induced by bonding the load platens to the specimen.

No established guidelines exist for desirable specimen size.

To obtain an approximately homogeneous stress state in a specimen

aggregate size (A) must be small relative to specimen minimum

dimension (D). Typical values for D/A are shown in Table 2-4 where

the minimum and average values were four and eight respectively.

Johnson and Lowe(68 ) believed that concrete strength increased as

D/A decreased. Bertacchi (73 ) found that strength results from 10

cm, 16 cm and 20 cm cubes were essentially identical while Dei

Poli (74) reporting on the work of others, noted that I in. maximum

aggregate concrete was seven percent stronger than 2 in. maximum

aggregate concrete. Thus, based on a limited amount of data,

triaxial strength appears sensitive to maximum aggregate size.

2.4.3 Triaxial Testing Machine Considerations

Machines for triaxial testing fall into two classes corre-

sponding to the two specimen types. For cylindrical specimens an
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Table 2-4

Geometric data for specimens used in triaxial tests

Maximum
Aggregate Size

Dimensions Size Ratio
Authors Reference (in) (in) (D/A)

Krishnaswamy (63) 4 <0.75 5

Palaniswamy and Shah (64) 3D x 9L 0.50 6

Chinn and Zimmerman (65) 6D x 12L <0.50 12

Gardner (66) 3D x 6L 0.75 4

Gerstle et al (67) 2.5 0.50 5

6.4D x 12.8L 0.5 13

4D x 1OL 0.5 8

3 0.5 6

2 0.5 4

4 0.5 8

Johnson and Lowe (68) 1.5D x 3L 0.93 16

Launay and Gachon (69) 2.8 and 5.6 --.

Mills and Zimmerman (70) 2.25 0.375 6

Newman (71) 4D x lOL 0.8 5

Richart, Brandtzaeg
and Brown (72) 4D x 8L --

D and A are minimum specimen dimension and maximum aggregate size respectively.
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oil filled chamber surrounds the specimen lateral surface which, in

turn, is coated with a non-porous material such as neoprene to

prevent oil from filling cylinder surface pores and inducing prema-

ture failure. Lateral surface loads are imposed by pressurizing the

oil chamger. Axial loads are applied through a hydraulically

actuated load platen.

For cubical specimen tests three different platen designs were

used to minimize friction induced lateral movement constraints:

0 brush bearing

0 fluid cushion

0 steel plate.

The brush bearing and fluid cushion platen designs were discussed in

Section 2.3.3 and will not be reviewed further.

Table 2-5 shows lubrication schemes employed in conjunction

with solid steel plate platens. Krishnaswamy 6 5) was the only

author to study the effects of different lubrication schemes on

compressive strength in a true triaxial test where all three stress

components were varied independently. His results are summarized in

Table 2-6 and it can be seen that as the amount of lubrication

increased the maximum compressive stress at failure (G3/f9)

decreased, thus suggesting that unlubricated load platens gave

artificially high triaxial failure stresses.

2.4.4 Triaxial Test Procedures

*" While most authors provided details on specimen composition

*I and curing, almost no description was given of testing procedures.

In particular only Gerstle et al.,( 6 7) Kotsovos( 75 ) and Chinn

and Zimmerman (6 5 ) noted specimen loading rate which varied over

the range 0.2 ksi/min to 5 ksi/min. In addition, Green and

Swanson (76) performed their experiments at a constant strain rate

of lO-4/sec. Specimen loading path in principal stress space also

differed considerably between authors. Palaniswamy and Shah (6 4 )

initially loaded their cylinders hydrostatically then, holding the
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Table 2-5
Lubrication schemes for reducing friction at the

specimen platen interface

Author Reference Lubricating Scheme

Gerstle et a]. (67) 4 polyethylene sheets with molyb-
denum sulphide grease

Gerstle et al. (67) 2 polyethylene sheets 0.002 in.

thick with axle grease

Gerstle et al. (67) 1 layer of grease

Krishnaswamy (63) 1 polyethylene sheet (0.006 in.)
or

Krishnaswamy (63) 2 polyethylene sheets with grease

Launay and Gachon (69) 4 aluminum sheets (0.4 m) with
4talc

Mills and Zimmerman (70) 2 sheets of 0.003 in. teflon with
axle grease

Mills and Zimmerman (70) 2 sheets of 0.004 in. polyethyl-
ene with grease.

Table 2-6

Effect of lubrication scheme on true triaxial
failure stress, Krishnaswany(

63 )

I Layer 2 Layers 0.006 in.
0.006 in. Polyethylene

Nonlubricated Polyethylene Plus Grease

aa)03 03 G2 a3

0.25 2.35 0.20 1.79 0.26 1.68

0.5 2.31 0.50 1.85 0.52 1.73

1.0 2.41 1.0 2.00 1.00 1.79

1.0 2.40 1.5 2.05

-_, 2.00 1.89

(a)All stresses normalized to fc, al/fc = 0.20.
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lateral pressure fixed, increased axial pressure until specimen

failure. Krishnaswamy (63) loaded his cube specimens in the three

principal stress directions, sequentially. Chinn and

Zimmerman(65) subjected cylinders to four different load paths.

In their notation Type I loading coincided with that of Palaniswamy

and Shah. Type II loading was initially hydrostatic followed by

increased radial loading holding the axial load fixed. Type III

loading was purely hydrostatic while for Type IV loading axial and

radial stresses were increased at a fixed ratio. In the

international cooperative research program, Gerstle et al. (64 )

first loaded specimens hydrostatically and then followed straight

line trajectories in the octahedral shear plane. Finally Mills and

Zimmerman(70 ) applied an initial hydrostatic load to their cube

specimens, then increased two principal stresses to a prescribed

level and finally increased one of these two stresses until failure

occurred.

There was also a paucity of definitions of what constituted

specimen failure perhaps because direct visual examination of the

specimen was not possible during tests. Mills and Zimmerman (70 )

had little trouble recognizing failure since their specimens

explosively disintegrated. Chinn and Zimmerman assumed failure had

occurred when the stress in the specimen started to drop.

Dei Poli (74 ) in his review of experimental work noted that

(i) Shickert and Winkler (7 7) assumed failure had occurred when one

of the strain components started to experience abnormally large

increases, (ii) Bertachhi and Belloti (78 )  used, as a failure

criterion, a sudden increase in strain in one direction accompanied

by a sudden decrease in strain in the other two directions and (iii)

Bremer (79 ) used a loading criterion and assumed failure when one

load component deviated abruptly from that programmed by remaining

constant. Most other authors did not describe their definition of

specimen failure.
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2.4.5 TRIAXIAL TESTING RESULTS

Most triaxial test data concerns the definition of a failure
surface under monotonic loading. In metals plasticity the yield

surface in'three-dimensional principal stress space is an infinitely
long circular cylinder whose axis is the hydrostatic pressure line.

From the discussion on biaxial stress states it is clear that the

failure surface for concrete is not a cylinder because its

intersection with a biaxial stress plane is not an ellipse.

Alternatively said, concrete failure is pressure dependent. In

addition, the intersection of the three-dimensional failure surfaces

with planes of constant pressure is not circular. Consequently

concrete failure cannot be accurately described in terms of stress

invariants 11 and J2 alone. Gerstle et al,( 67 ) in a study

that paralleled the biaxial investigation summarized in Section

2.3.5, reported results for seven laboratories that used the same

concrete in all tests. Figure 2-42 shows failure stresses found in

a typical 60* sector of the octahedral (i.e. constant hydrostatic

stress) plane at a pressure an of 5 ksi. Considerable scatter

existed between the various sets of data with unlubricated platen
machines giving the highest strengths. However, failure stress on

path 1 was consistently farther from the hydrostat (01 = 2

= a3 = on) than the failure stress on path 3, where paths 1, 2,
3 were loadings up the hydrostat to an = 5 ksi followed by loading
in the octahedral plane. In the octahedral plane the al increment

on path 1 was compressive while the G3 increment on path 3 was
tensile.

Launay and Gachon (69 ) performed a more extensive study of
failure surface shape. Figure 2-43, which gives their results,

shows a 60 arc of the failure surface's intersection with various

octahedral planes, an = 3ao ,  where a0 was uniaxial

compressive strength. The results in Figure 2-42 correspond to a =

3 and appear to be comparable. From Figure 2-43 it is seen that as
the amount of hydrostatic pressure increased the curves became more

circular.
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Figure 2-43. Intersection of failure surface with octahedral
planes an = 3ac/o, ao = uniaxial compressive strength.
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Launay and Gachon also plotted, Figure 2-44, the intersection

of the failure surface with a, = 02, which corresponds to the

plane of data for conventional triaxial experiments. The inclined

line marked 03/ o  is the principal stress axis a3 normalized

to uniaxial axial strength 0 and the inclined line 900

anticlockwise from it is the stress trajectory oI = '2, a3 =

0. Failure envelope expansion with increasing confining pressure

(here parameterized as a) is clearly evident.

Figure 2-45 shows the results obtained by Chinn and

Zinmmerman (6 5). The authors probed the failure surface along

several different stress trajectories and for confining pressures up

to 20 f"c Their data possessed some scatter particularly at

higher pressures but, after allowing for a reversal of axes, the

trends are identical to those in Figure 2-44. The results of the

above authors are also in agreement with the data collated by

Johnson and Lowe, (68), Figure 2-46, from various sources.

From the preceding five figures a clear definition of failure

surface data can evolve. The failure surface is highly pressure

dependent in compression, possesses a small tensile stress region

which is pressure insensitive and, has noncircular cross-sections on

octahedral planes. Finally the intersection of the failure surface

with the plane 02 = 03 is two curved lines that straddle the

hydrostat.

As part of the international cooperative research program

coordinated by Gerstle,(67 ) Schickert and Winkler (72 ) performed

a beautifully documented set of true triaxial (and biaxial)

compression experiments. Stress-strain plots for every biaxial and

triaxial test were separately reported together with average results

and 99 percent confidence limit. Also both unlubricated and

flexible steel platen designs were investigated. The principal

findings and conclusions of the study, in addition to those stated

in the previous paragraph are:
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* unlubricated platens produce higher strengths than
flexible platens

* unlubricated platens produce more scatter in data
than flexible platens

o failure always occurs by extension in the direction
of minimum principal stress.

Figure 2-47 shows stress-strain data on a 34 N/mm2 uniaxial

strength concrete. In Figures 2-47(a), and (b) hydrostatic stresses

of 0.75 fc' and 1.5 fcI were first applied followed by loading

in path I on the octahedral plane (i.e., 2Aa 2 = 2AG 3 = -Aal).

The two confining pressures increased a, to 1.8 'c and 3.2

fe c respectively at failure thus demonstrating the beneficial

effect of confining concrete. Also compressive strain e1 at

failure was 3-10 times greater than that in uniaxial tests with most

of the strain occurring after departure from the hydrostat. Thus

concrete is more ductile in ttiaxial compression than is predicted

by a simple scaling of uniaxial strain at failure by the ratio at

failure of triaxial stress to uniaxial stress. When the two cases

in Figure 2-47 are compared it is seen that for low confinement,

volumetric strain still retained the characteristics of its uniaxial

response with a dilatational trend setting in just prior to

failure. For the high confinement case no dilatation occurred and

at failure all strains were still compressive.

Green and Swanson (76)  briefly studied triaxial cyclic

loading using cylindrical specimens of a 6 ksi uniaxial strength

concrete. Results for a single test are shown in Figure 2-48, where

symbols on the curves were used to indicate corresponding points in

the load history. A 2 ksi hydrostatic preload was first applied and

then the axial stress was cycled in compression. In Figures 2-48(a)

negligible stiffness.degradation is evident while some hysteresis in

the second cycle is evident. The pressure-volumetric strain

response was more complicated with dilatation occurring shortly

after reloading to the paint of previous unloading. The results in

Figure 2-48 were for a low confining pressure and for only two load

99



........... . .. . , .. ..... ......... . . . . . . . . . . . . . . . .. . . . . . . . ..

[ ./ TNT. i CG?.aT

(b) l

CL-

-4~~e -I -4 -•

C,..
PATH. i

LAOATORY-. SAM 2.12 HYDOSTATIC STRESS. 1.0 N/n""

OESISNTION. MEAN MATERIAL. CONCRETE
TEST CONDITIONS. FLEXIBLE PLATENS

TENSION C X, 10' CaMFRESSION

N C2 - - -

Cs4

PATH- I

LABORATORY- Ban 2.12 z DROSTAT IC STESS.2

DESIGNATION. MECAN MATERIAL- OCRT
*TEST CONDITIONS- FLEXIBLE PLATENS

TCSON X 10' COMFRESSION

Figure 2-47. Triaxial stress-strain results for same concrete under
different levels of hydrostatic prestress.

100



Ui (b)

4-

-2-

VOLUME CHANGE %

5 A8

(a)

'- __ _ _ __ _ _ __ _ _ __ _ _ __ _ _ __ _ _ __ _ _ __ __6_ _ _

'U-4

As DEVIATORIC -INVARIANT STRAIN 4j %

Figure 2-48. Cyclic stress-strain data from a conventional triaxial
test.

101



cycles at or below the concrete monotonic loading strength. Clearly

much more data are needed to fully represent concrete triaxial

response under cyclic loading.

2.4.6 Outstanding Issues

Experimental data from concrete triaxial tests have mainly

covered two facets of concrete response: (a) failure under mono-

tonic loading and (b) stress-strain response under monotonic

loading. For triaxial stress states limited or no data are avail-

able on the following possible response features:

0 post-peak response - strain softening

* microcracking induced stiffness degradation

0 microcracking induced anisotropy

0 cyclic stress-strain response

0 strain rate sensitivity.

Given the multiplicity of adverse load environments that
- prote.,;ve facilities must survive, it is important that the

existence and relative size of these response fpatures be determined.

From the discussion of uniaxial results it is anticipated that

concrete failure will not occur when the stress reaches the failure

surface if the concrete is properly confined. Rather, the stresses

will subsequently decrease as the strains increase and neighboring

parts of a structure will be exposed to increased loads. If this is

the case then constitutive theories that assume failure has occurred

when the stress reaches the failure surface will be overly

conservative while theories that maintain the stress at the value

attained on the failure surface will be unconservative.
Qualitatively concrete response can be described in terms of

microcracking. In the discussion on uniaxial and multiaxial experi-

ments it was shown that microcracks propagate perpendicular to the

direction of maximum deviatoric tensile stress. It is reasonable to
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assume that microcracking in a particular direction will have two

consequencies. First stiffness perpendicular to the cracking will

be decreased while that parallel to the cracks will not. Secondly

the directionally dependent stiffness will imply that concrete has

become anisotropic both in its incremental stress-strain law and in

its failure strength. Currently the authors are aware of no

published data on microcracking induced anisotropy.

The cyclic stress-strain response data obtained by Green and

Swanson pointed to a complicated behavior even for the limited case

of conventional triaxial experiments. The consequences of such

deformation patterns in a protective structure are completely

unknown. Triaxial strain rate sensitivity could be important and,

in light of the demonstrated sensitivity of uniaxial data to strain

rates, should be explored.

A final item -- relative directions of the stress and the

inelastic strain increments -- should be added to the list. Such

data would aid in constitutive model development. However, no data

exist to suggest that constitutive model prediction errors are the

result of incorrectly assuming an "associated flow rule."
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SECTION 3

EXPERIMENTAL DATA BASE: STEEL-CONCRETE INTERACTION:

3.1 REMARKS

The least understood aspect of reinforced concrete response is

the interaction (load transfer) that occurs between the plain

concrete and the embedded reinforcing steel bars - rebars. Much

time and money have been spent testing reinforced concrete

structural elements. All such experiments can hope to achieve is a

statement on how the particular element being tested responds to the

loads being applied. Nothing can be concluded concerning steel-to-

concrete load transfer. This is because in such experiments there

is a multiplicity of active phenomena, few of which have been

controlled enough to determine their individual contributions to

steel-concrete interaction. Additionally, nonlinearity of

reinforced concrete response precludes either scaling of results to

predict stress and deformation of larger but similar structures or

the prediction of the response of related structures. To understand

steel-concrete interaction, specially designed and carefully

controlled and instrumented tests must be performed. What follows

is a discussion of such tests and the results obtained therefrom.

As long as a reinforced concrete structure has experienced no

cracking there is negligible interaction between the steel and

concrete. In this case satisfactory stress-strain equations for

reinforced concrete can be obtained by modeling the steel and

concrete as a homogeneous continuum whose material properties are a

weighted volume average of those of steel and concrete. After

cracking has occurred, three new load transfer mechanisms are active

that are associated with:

0 Steel-concrete bond

* Aggregate interlock

0 Dowel action.

Thus, any useful reinforced concrete theory must adequately simulate

these mechanisms. The steel-concrete bond transfers rebar tensile
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stresses into the surrounding concrete. For modeling purposes this

transfer mechanism is idealized as an interfacial shear or 'bond'

stress, Figure 3-1, that is governed by a bond stress-bond slip

law. Bond slip is the relative motion of a rebar and its sur-

rounding concrete. Aggregate interlock or "interface shear

transfer" is the locking up of aggregate asperities on opposite

faces of a crack so as to provide a shear stress transfer mechanism

across a crack face, Figure 3-2. Finally, dowel action is the

resistance provided by reinforcing bars that span a crack, to

sliding of the crack faces relative to each other, Figure 3-3. In

the present research program emphasis was placed upon the

steel-concrete bond. Further work is needed to understand the roles

played by aggregate interlock and dowel action in transferring load

from one area of a degraded reinforced concrete structure to another.

3.2 MECHANICS OF THE STEEL-CONCRETE BOND

3.2.1 Steel-Concrete Bond Mechanisms

The processes that contribute to the steel-concrete bond have been

studied by Bresler and Bertero,(82 ) Dorr, (83) Edwards and

Yannopoulos, (8 4) Ferguson et al.,'(85 ) Lutz and Gergely (86 ) and

it is generally accepted that there are three contributions:

0 adhesion

* friction

0 mechanical interlock.

Adhesion is the physical bonding of the concrete to the steel and is

the result of chemical processes that occur when a reinforced

concrete structure is curing. Friction is present because during

the curing process the concrete shrinks around the reinforcing steel

leaving the steel-concrete interface in a state of residual

compressive stress. Finally, mechanical interlock arises from the

lugs on the surface of a deformed rebar interlocking with the

surrounding concrete. Of course, for plain rebars mechanical

interlock is not present.
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Of the three contributions, mechanical interlock is the most

important contributing approximately half the strength of the

steel-concrete bond. Lutz and Gergely (86) examined bond stress in

detail using finite element analysis. Their principal conclusions

were:

0 Adhesive bond has a strength of 50-100 psi and is
destroyed at low levels of bond slip.

0 Compressive stresses arising from concrete shrinkage
are approximately 100 psi.

* Shrinkage stresses are sufficient to keep steel and
concrete in contact during the slip process, i.e.,
they dominate any tendency for the steel and
concrete to separate because of a Poisson's ratio
differential between steel and concrete.

3.2.2 Bond Failure Mechanism

Depending on the geometry, bar type, rebar configuration and

stress history a reinforced concrete structure can exhibit a variety

of failure modes. Here discussion is limited to experiments on a

single rebar in which case the observed failure types are:

0 pullout

0 transverse cracking

* longitudinal cracking

* rebar yielding or fracture.

Edwards and Yannopoulos (8 3) and Mains (87) found that plain

bars pulled out without visible surface cracking. Mathy and

Watstein (88) noted that a similar pullout occurred when deformed

bars were not embedded far enough into the concrete. Ferguson et

al. (85) and Bresler and Bertero (82) found transverse cracking

occured when the rebar had insufficient concrete cover. In this

case small radial cracks initiated close to the rebar and propagated

outwards in a plane transverse to the rebar. Goto (89 ) tracked

growth of such cracks using a dyeing technique and theoretical

evidence for transverse cracks was given by Mirza and Houde. (90)
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Transverse cracking failure results when tensile stresses in the

concrete exceed concrete tensile strength and can be inhibited by

using larger covers.

Longitudinal cracking occurs because large hoop stresses are

induced in the concrete by the rebar lugs that push the concrete

outwards as slip* occurs. Untrauer and Henry (91) and Tepfers (92 )

showed that longitudinal cracking occurs in beams and simple

geometries under multiaxial loading. Many researchers delayed

splitting by surrounding the rebar with stirrups (Mains,( 8 7 ) Kemp
(93) (94)and Wilhelmt9 3 ) or wire cages (Ferguson et al., Mathey and

Watstein 88)). Presently, no criterion exists for when

longitudinal rather than transverse cracking should occur although

Lutz and Gergely(86) suggested a necessary condition is that the

bond stress be greater than the rebar stress.

Rebar yielding and fracture occur when rebar embedment length

is sufficient to preclude pullout, and cover is sufficient to

suppress cracking.

3.2.3 Experimental Procedures for Bond Stress-Bond Slip Determination

Specimens used to determine bond stress and bond slip

information have been of the following form:

0 pullout

0 tension

9 structural element.

The pullout specimen was the first to be used and is shown

schematically in Figure 3-4. One end of the rebar is embedded in a

block of concrete and the tensile load that is applied to the rebar

free end is equilibrated by a fixed steel restraining plate.

Pullout specimens are either 'concentric' or 'eccentric' depending

on whether the rebar passes through the Lenter of gravity of the

concrete cross section. Concentric specimens have a circular,

rectangular or square cross section, (Edwards and Yannopoulos, (84 )

(75), Mathey and Watstein,(88) Tepfers (92) and Untrauer and
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Henry (91). Eccentric specimens can have any cross section

(Ferguson et al.,( 94 ) Mains,(87) Perry and Jundi,( 96 ) Perry

and Thompson ) and have been used to more closely replicate

conditions found on the tension side of a reinforced concrete beam.

The principal shortcoming of the pullout test (Ferguson et

al., (94 )) is that close to the restraining plate the concrete is
in an unknown state of compression and lateral constraint, which has

an indeterminate effect on bond strength. For this reason more

recent investigators (Bresler and Bertero,(82) Dorr, (83)

Goto, (89) Ismail and Jirsa,(98) Mirza and Houde(90)) used the

tension specimen shown diagrammatically in Figure 3-5. Here both

ends of the rebar are in tension and the only concrete stresses are

fabrication-induced shrinkage stresses, stresses transferred from

the rebar by the bond and stresses arising from known lateral loads

(Dorr,(83) Untrauer and Henry (91)).

The least commonly used specimens for bond stress study are

structural elements such as the beam-like specimen employed by Kemp

and Wilhelm (93 )  and the column-like specimen of Bertero et

al.,(99). Structural elements are of special interest only, since

the stress state around the rebar is extremely complex. Typically,

the experimental objective with such a specimen was to understand

structural element response rather than gain fundamental insight

into steel-concrete bond response.

Originally the only variables that could be measured in

pullout, tension and structural element tests were the imposed rebar

load and the end slips, which are the displacement differentials

between the rebar and concrete at the ends of the concrete cover.

Consequently, nothing could be concluded about bond stress and bond

slip distributions along the rebar and how these varied with bar end

load, although it was known that experimental results were inconsis-

tent with an assumption that bond stress and slip were uniform along

the bar embedment length. Starting with Mains (87 ) this situation

was partially remedied through internally strain-gaged rebars

constructed by sectioning a rebar lengthwise, milling out an
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internal channel, placing strain gages in the channel, and welding

the bar halves together again. With an internally strain-gaged

rebar the strain distribution in the rebar was measured and the bond

stress distribution compatible with it computed as follows. From

Figure 3-6 if c(x) is the local bar tensile strain then by

equilibrium

A=Ec , T da AE de=E Tb = - p_ T = p (3-1)

where a and b are the stresses in the bar and bond, E is the bar

Young's modulus, and A and p are the average bar cross section area

and perimeter respectively. However, currently there does not exist

any method of monitoring the slip between steel and concrete away

from the ends of the concrete cover.

3.2.4 Parameters Influencing Bond Slip and Attainable Bond Stress

Some of the principal reasons why so little progress has been

made in developing constitutive models for the interaction between a

rebar and surrounding concrete are the number of independent

variables involved, the different measur, used to report

experimental results and the great scatter that exists in data from

ostensibly identical experiments. Experimental variables at the

disposal of a researcher include at least those shown in Table 3-1.

Additionally, there are non-quantifiable variables such as:

0 casting orientation

0 bar position

0 curing history.
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Table 3-1

Variables in the design of steel-concrete
interaction experiment

0 Load History

e Stress Level
e Monotonic or Cyclic
* Static or Dynamic
* Uniaxial or Multiaxial

* Specimen Design

* Pullout
* Tension
* Structural Element

* Rebar Geometry

* Diameter
* Surface Finish
9 Embedment Length

* Rebar Material

* - Yield Stress

0 Concrete Geometry

9 Cover Dimensions
* Cross Sectional Shape
0 Aggregate Size

* Concrete Properties

0 f' c

* Auxiliary Reinforcement

* Stirrups
* Wire Cages

Some progress has been made in assessing sensitivity of bond

strength and slip to the 15 or so independent variables; the load

115

_II!II'IIIV ..I rv



parameters will be discussed later and the specimen design has been

discussed in the previous section.

Ferguson et al.,( 94 ) Figure 3-7*, noted that for a constant

average bond stress, -av' end slip increases almost linearly with

rebar diameter. Since

av= 2wL (3-2)

Mhere P, d, L are bar end load, diameter and embedment length

respectively, it is impossible to transform this result into a

statement on how Tav varies with d. It is reasonable, however, to

expect some sensitivity since rebar diameter influences manu-

facturing-induced residual shrinkage stresses which in turn control

frictional contributions to bond stiffness.

It is demonstrably evident that a bond stress/bond slip

constitutive relationship depends on rebar surface conditions.

Mains observed that plain bars have half the resistance to bar

pullout and/or bond failure as deformed bars while Edwards and

Yannopoulos found plain bar bond strength to be 35-50 percent of

that of deformed bars. Further Goto,(8 9) using three diffe,-nt

lug designs, showed that results are also sensitive to lug design.

Embedment length is another parameter with an obvious effect

of bond strength. Here, for a pullout test, embedment is defined as

the length of rebar covered by concrete and for a tension test it is
half the length. Embedment also influences the bond stress distri-

bution and the test specimen failure load, with short embedments

resulting in pullout and long embedments producing concrete cracking

failures or bar yielding.

T Tigure 3-7 compare solid curves as a group and dashed curves as a group.
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No research has been done on bond strength and bond stress

distribution sensitivity to rebar material properties. Rebar

Young's modulus and Poisson's ratio vary little from bar to bar, so

the only remaining variable is rebar yield stress which can control

specimen failure mode in that test specimens with low strength bars

might fail in bar yield/fracture, whereas with high strength bars,

they might fail by bar pullout.

Concrete cover is a very important parameter in determining

test specimen failure mode and load, and is defined to be the

minimum distance perpendicular from the rebar to a concrete free

surface. Edwards and Yannopoulos (84) found that by increasing

cover from 1.4 to 2.0 bar diameters, specimen pullout strength

increased 20 percent. They also noted that increased cover also

increased shrinkage stresses on the rebar and the ability of the

cover to resist longitudinal and transverse cracking. A similar

observation was made by Ferguson et al. (94 )  Tepfers( 92) found

that for six different covers the bar load necessary to induce the

first surface crack increased monotonically with bar cover.

Using concrete prisms with a square cross section Mirza and

Houde (90 )  showed that cover controlled the distance between

transverse cracks in a specimen, with smaller covers producing

shorter inter-crack distances. They also noted that

0 bar end slip increases with bar cover (Figure 3-8)

0 restraint on the rebar increases with bar cover
(Table 3-2)

These statements appear contradictory but are easily

reconciled. First, bar end slip was measured at the ends of tension

specimens with the same length of concrete cover. Specimens with

smaller cover experienced transverse cracking, and slip occurred at

these crack locations but was not taken into account. Thus the

smaller covers tended to move with the rebars while the larger

covers experienced little or no cracking and remained more

monolithic. 'To explain the second statement note that for each

cover size, bar slip was computed using rebar lengths equal to the

intercrack distance for that cover.
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The effect of aggregate size and shape on bond strength and

distribution has never been investigated. Its possible importance

would arise from any influence aggregate surface asperities have on

the quality of the mechanical interlock between aggregate and rebar

lugs.

Table 3-2

Restraint on rebar slip increases with cover

(a) (b) Inter-
crack

Specimen Ac  Slip Elongation Restraint Distance

Size (in. ) (I0o4 in.) (l04 in.) (l04 in.) (in.)
2 x 2 4 16.5 17.6 0.9 1.0

4 x 4 16 23.0 44.0 21.0 2.5

6 x 6 36 33.0 70.5 37.5 4.0

8 x 8 64 23.4 70.5 57.1 4.0

(a) Measured at 50 ksi bar end stress

(b) Computed with bar length equal inter-crack distance and with 50 ksi
bar stress, E = 28.4 x 106 psi.

The most important plain concrete property is its simple

compression strength 'c " Untrauer and Henry (9 1) in a series of

pullout tests found that average bond strength Tav was propor-

tional to f' , a result in agreement with the findings of

Ferguson et al. 94 )  Similar trends were reported by Perry and

Jundi. (96  Perry and Thompson~g T) found that the bond stress

distribution was also sensitive to f' c; this will be discussed

further in the next section. Finally, Mirza and Houde(90 )

believed that bond strength is in fact insensitive to concrete

strength; however, it is possible that the large scatter in their

results precluded observation of a definite trend.

Other variables that influence attainable bond stress levels
are less understood. Mains, 87  Mathey and Watstein,(88)

Bertero et al.,(99) used stirrups and wire cages in their
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specimens to increase resistance to longitudinal splitting. The
effect of these added reinforcements was to impose additional radial

constraints on the rebar and thus affect both the frictional and

mechanical interlock contributions to bond strength. However, no

attempt has been made to study this effect in detail.

Finally, the fabrication process itself introduces significant

variations in bond strength. In particular, when concrete for

eccentric pull specimens is cast with the rebar horizontal,

attainable bond strength is sensitive to whether the rebar is

towards the top or bottom of the form. Ferguson et al.,(85,94)

noted that because water and entrapped air tend to collect

underneath top-cast bars such specimens have up to a 20 percent

weaker bond strength than bottom-cast bars. Similarly, when pullout

specimens were cast with short covers and with the rebar vertical,

Edwards and Yannopoulos(84 ) observed that the bond was weaker when

the rebar was pulled downwards than when pulled upwards and the

difference was attributed to water and pores beneath the rebar lugs.

*1 Not all the variables listed in Table 3-1 would be present in

a constitutive theory; load history parameters obviously would be

while test specimen type would not be. The theory would relate bond

stress to bond slip at each point along a rebar and would be applied

to individual rebar-concrete mix combinations. A general theory

that has lug design described explicitly through a set of parameters

is not anticipated. Instead, specimen tests would have to use the

actual rebar type to which the theory would be applied. Rebar

embedment length would not be a constitutive parameter; rather its

effect would be predicted by the theory. Rebar yield would be a

parameter in the theory. Of the concrete geometry listed in Table

3-6, only cover dimensions might be in a constitutive theory, and

then, only if the prestressing effect caused by shrinkage during

curing could not be accounted for analytically. Concrete compres-

sive strength would be a constitutive variable. Approaches for

accommodating stirrups and wire cages into a constitutive theory are

not known at present and, of course, the theory would not account

for fabrication-induced anomalies in bond strength and stiffness.
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3.2.5 Bond Stress Distribution

The measurement of bond stress along an embedded rebar can only be

achieved by indirect means through computing the slope of the curve

of steel strain versus distance along the rebar. D~rr ( 83 ) noted

that since bond stress is essentially the spatial derivative of a

measured quantity, its value is subject to more scatter than bar

load, bar end slip and bar strain. Additional scatter is introduced

through unevenness in bond arising from curing variations and

differences in bar surface conditions. However, general trends are

clear. Figure 3-9 is typical of the results obtained and shows how

the bond stress distribution varies along a rebar in a pullout test

for three different levels of bar end load. For low levels of bar

load most of the bond stress is at the loaded end of the bar. As

the load increases the maximum bond stress increases and occurs

farther along the rebar, also complete debonding occurs at the

loaded end. Similar trends can be seen in the work of Mains,(87)

Figure 3-10.

From Figure 3-9 it is clear that maximum local bond stress is

a function of both external bar load and, less expectedly, distance

from the loaded end of the specimen. This latter observation has

been made by several authors; Bertero et al., (99 ) Mains,(8 7

Nilson ( I 0 0 ) and Perry and Thompson. g7  There are at least two

possible reasons for dependence on distance along the rebar:

0 Near the loaded end of the specimen there is not so
much constraint from the concrete as would occur
deep inside the specimen.

0 During curing, water and air pores might have
collected around lugs near the specimen ends
weakening the concrete.

Edwards and Yannopoulos (84 ) contend that maximum bond stress

does not vary with distance along the rebar. However, these authors

intentionally set out to achieve a uniform bond distribution along

their rebar by using a short embedment length. The dependence of

maximum bond stress on cover length has an important consequence for
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specimen design. If a short embedment length is used, a lower

maximum bond stress will be measured than would be achieved in an

actual structure. Thus to obtain results of practical importance,

either a sufficiently long embedment length must be used or

additional concrete must be added to the ends of the specimen, as

was done by Drr,(83)" Figure 3-11, to achieve a high level of

constraint about the rebar at the loaded end.

So far the discussion has been limited to rebars under tensile

stress. When the rebar is in compression locally high levels of

bond stress are achieved where the rebar enters the concrete

(Bertero et al." 99 )).

3.2.6 Attainable levels of Bond Stress

In this section are gathered together a selection of the

values obtained for maximum bond stress under monotonic load.

Effects of cyclic loading and lateral constraint will be assessed in

the following sections. Because of the large number of experimental

variables involved, a wide range of bond strength values has been

found that is further complicated by the ways bond strength is

defined. Authors that do not use internally instrumented rebars

have defined bond stress as bar load divided by embedded bar surface

area. Obvious draw- backs to such definition are that computed

bond stress decreases as embedment length increases, since the bond

stress distribution that reacts the bar load is localized; if only a

short embedment length is used, low bond stresses are again obtained

because of the lack of concrete constraint. The correct way to

define bond stress was shown in Section 3.2.3.

For plain bars, typical values of average maximum bond

strength Tav are shown in Table 3-3 where it is seen that average
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Table 3-3

Bond strength for plain bars

Test
Strength Cover Embedment Test

Author(s) (psi) (in.) (in.) Type

Edwards and Yannopoulos (84) 522 1.0 1.5 pullout

Edwards and Yannopoulos (84) 638 1.4 1.5 pullout

Mains (87) 460 2.0 21.0 eccentric

bond strength increases with concrete cover and decreases with em-

bedment length. For monotonically loaded deformed bars without any

lateral constraint, a sample of measured bond strengths is given in

Table 3-4 and it is clear that bond strength is sensitive to experi-

mental details and, therefore, that either development of a theory

to predict bond strength or execution of the suite of experiments

needed to determine such a theory's constitutive parameters is a

non-trivial exercise. It is also clear why no practical theory has

been developed to date; the data base for any postulated theory is

most certainly inadequate.

3.2.7 Cyclic Loading Effects

In preceding sections bond stress and strength under monotonic

loading was examined. In protective structures, concrete can also

be expected to experience some cyclic loading under certain cir-

cumstances. In this section the effect of cyclic loads on the

integrity of the bond between a single rebar and the surrounding

concrete is discussed. The presentation is divided into

0 rebar loaded in tension only

* rebar loaded in alternating tension and compression.

Bertero et al.,( 99 ) Bresler and Bertero,(82) Edwards and

Yannopoulos, (9 5-  Ismail and Jirsa, (98)  Morita and Kaku, (101 )

and Perry and Jundi( 96) performed experiments to understand how

126

1, 4 . N " ---



Table 3-4

Average bond strength for deformed bars

Bond Embedded Bar Test
Authors Strength Cover Length f' Diameter Type

Edwards and Yannopoulos (84) 1116-1363 1.00 1.50 6293 0.63 Pullout
Edwards and Yannopoulos (84) 1407-1682 1.40 1.50 6293 0.63 Pullout

Mirza and Houde (90) 655 5.50 8.00 4800 1.0 Tension
Mirza and Houde (90) 286 2.50 8.00 4120 1.0 Tension

Perry and Jundi (96) 453 0.75 9.00 2200 0.73 Eccentric
Pullout

Perry and Jundi (96) 543 0.75 9.00 3360 0.73 Eccentric
Pullout

Perry and Jundi (96) 618 0.75 9.00 4030 0.73 Eccentric
Pullout

Perry and Jundi (96) 735 0.75 9.00 5060 0.73 Eccentric
Pullout

Tepfers (92) 461 0.47 1.97 3567 0.63 Pullout
Tepfers (92) 693 1.22 1.97 3567 0.63 Pullout
Tepfers (92) 734 0.71 3.13 3567 1.00 Pullout
Tepfers (92) 1088 1.89 3.13 3567 1.00 Pullout
Untrauer and Henry (91) 1020-1250 6.00 6.00 4630 1.128 Pullout
Untrauer and Henry (91) 1315-1600 6.00 6.00 4630 0.73 Pullout
Untrauer and Henry (91) 1560 6.00 6.00 6410 1.128 Pullout
Untrauer and Henry (91) 1330 6.00 6.00 6410 0.73 Pullout
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cyclic loading in tension degrades the steel-concrete bond. The

principal qualitative conclusions were:

0 The bond at the loaded end of the rebar slowly
degrades and the bond stress distribution migrates
inwards away from the loaded end.

0 After 10 to 30 cycles at the same maximum, tensile
bar stress, maximum bar end slip has not increased
significantly.

0 The bond stress-bar slip relationship is most
sensitive to the previous maximum bar load.

* During the unload portion of a load cycle there is
little slip recovery.

These conclusions are illustrated in the following figures.

In Figure 3-12, (Perry and Jundi(9 6 )," , are shown the bond stress

distributions for various load cycles. The test was a pullout and

the rebar had a 0.75-inch cover and a 9-inch embedment. In the

figure the load'was applied at the left and the reason for the high

non-zero bond at the right is not understood. However, the slow

migration of the bond stress distribution away from the loaded end

can be seen.

The non-deleterious effect on bond stress levels of a small

number of load repetitions is shown in Figure 3-13 (Ismail and

Jirsa (98) ) and has also been observed by Bresler and Bert-

ero,( 82) Drr(82) and by Edwards and Yannopoulos.(9 5"  In

Figure 3-13, steel strain along a tension specimen is plotted for

various load cycle numbers. Since the slope of these curves is

proportional to local bond stress, it follows that when two curves

are close together, little change in bond stress has occurred. The

loading history for these curves is given in Table 3-5. In Figure

3-13, it is seen that the bond stress distribution appears primarily

controlled by the maximum load experienced over all previous

cycles. For example, with specimen T20 the strains for cycles 7 and

22 at a bar end load of 20 ksi are essentially identical (and

similarly for cycles 6 and 12 at a bar end load of 40 ksi), while

cycles 5 and 7 have markedly different strain distributions because
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Table 3-5

Load histories corresponding to Figure 3-13

Peak Stresses

Cycle
Specimens No. Tension fs' ksi* Compression fc

T20 1-5 20 0 for T20
TC20 6-7 40 0.4 fc for TC20

8-12 20
13-17 30
18-19 10
20-21 20
22 Yield

T40 and 1-5 40 0 for T40
TC40 6-10 20 0.45 f'c for TC40

11 Yield

*1 ksi = 70.3 kg/cm 2
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for cycles 6 and 7 (see Table 3-5) the maximum bar stress was raised

to 40 ksi. An analogous behavior can be seen when comparing cycles

1 and 11 of specimen T40 at a maximum bar stress of 40 ksi.

Sensitivity to maximum bar stress has also been observed by Bresler

and Bertero.
(8 2 )

Figure 3-14 (Edwards and Yannopoulos ( 5)) shows that there

is little slip recovery when a test specimen is unloaded. The

authors subjected their thin pullout specimens to nine identical

load-unload cycles. A large amount of slip accumulated during the

first load cycle but subsequently there was minimal recovery.

Further, succeeding cycles did little to change the amount of slip,

which agrees with remarks made in the preceding paragraph. That it

takes increasing bar stress to increase slip can be seen in Figure

3-15 (Morita and Kaku( 101'), who also used a very short embedment

length. Again, there is little recovery during unloading.

Morita and Kaku (10 1) also studied cyclic loading involving

stress reversals. In Figure 3-16 some of their results are shown

schematically. In Figure 3-16a the specimen was cycled between

fixed slip limits and after a few cycles the stress-strain curve

stabilized and became that shown in Figure 3-17. The horizontal

portions of the curve, parts OA and CD, can be thought of as Coulomb

friction corresponding to the bar lugs having ground out a small

region of the concrete adjacent to the bar. Portions AB and DE

correspond to the lugs contacting concrete that has not been

severely deformed by the bar lugs. Unloading branches BC and EO are

characterized by an almost total lack of strain recovery. This is

attributed to the concrete debris locking around the bar lugs

inhibiting strain recovery in the bar. It is only after the stress

has reversed that strain recovery is possible.

Figure 3-16b shows totally reversed cyclic bond stress versus

slip for increasing levels of stress. The presence of Coulomb

friction in the strain unloading branches and the small amount of

strain recovery in the stress unloading branches can be clearly seen.
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Figure 3-16. Bond stress versus slip for fully reversed cyclic
histories (a) fix slip limits, (b) increasing
slip limits.
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3.2.8 Multiaxial Loading

The least understood aspect of this subject is the effect of

multiaxial loading on bond stress. Several researchers (Bertero et

al., 8  Mains(87) and Mathey and Watstein (88 ) have

matter-of-factly used stirrups and wire cages to suppress the

longitudinal cracking failure mode. However, since these

reinforcements were buried inside specimens and were not

strain-gaged, the amount of constraint provided by them is unknown.

However, it is clear that if cracking that would otherwise have

taken place was prevented then additional pressure was exerted on

the rebar and increased bond strength was obtained.

To date, only two studies, Untrauer and Henry (91 )  and

Dorr, (8 3) have sought to systematically determine the effect of

external, controlled lateral pressure on bond strength. Dorr used

tension specimens with strain-gaged rebars and found that near the

ends of his specimens he could double his bond stress and greatly

reduce slip by applying a lateral pressure of approximately 2175

psi. In their study Untrauer and Henry used a pullout specimen with

square cross section and applied a lateral pressure fn to only two

sides through hydraulic rams. Figure 3-18 shows average bond stress

versus end slip curves for zero and 1500 psi lateral pressures and

it can be seen that attainable bond stress was doubled in the latter

case to over 2 ksi and that controlled slip was also doubled.

Figure 3-19 shows bond stress increasing linearly with f n for

various fixed slip levels and two different bar sizes.

3.2.9 Issues

In the preceding sections a detailed discussion of the state

of knowledge on the bond between steel and concrete has been given

and it can be concluded that:

0 Currently there is no universally accepted technique
for obtaining experimental data on the
steel-concrete bond.

s No technique exists for measuring slip along a rebar
embedded in concrete.
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* The large number of experimental variables has
resulted in a very diverse data base; consequently,
a considerable effort is necessary in order to
develop a reliable data base from which validation
of a constitutive model may be carried out.

* Bond stress and slip depend on

* bar and concrete constitutive properties

# bar lug design

* confining stresses due to applied external
pressures of stirrups.

Other steel-concrete interaction items that pertain to con-

tainment structures but were not discussed because of a complete

lack of experimental data, are:

0 Sensitivity of bond stress and slip to strain rate
effects.

* Interaction between rebars at right angles to each
other.

0 Scatter instrinsic to reinforced concrete material
properties.

3.3 AGGREGATE INTERLOCK, DOWEL ACTION

*As noted previously (see Section 1), the dowel and aggregate

interlock problems are not treated in the analytical development

reported herein. Nevertheless, since the establishment of a sound

data base is a necessary prerequisite to further model development,

it is deemed appropriate to review such subjects from a test data

standpoint. Consequently, in this subsection the pertinent test

data concerning aggregate interlock and dowel action is reviewed.

The discussion, all of which refers to shear transfer across cracks

in reinforced concrete, partially follows the recent review by

Leombruni, et a1.(102)

3.3.1 Aggregate Interlock

The aggregate interlock problem refers to interface shear

transfer (IST) across crack planes, and to joint dilatancy (increase
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in crack width) due to relative displacement parallel to the crack.

The manner in which IST takes place has a major impact on the

effective 'shear modulus' of a reinforced concrete specimen. An

understanding of the dilantancy problem, on the other hand, is

necessary in order to properly determine the manner in which the

reinforcing steel is loaded in the presence of shear deformation.

The tests performed by Fenwick, (103'104 ) Figure 3-20, are

perhaps typical of the aggregate interlock or IST experiments. Here

a predefined crack is subjected to relative slip while the crack

opening is maintained essentially constant. The effects of crack

width and concrete strength on the load-slip behavior were studied

for crack widths ranging from 0.0025 to 0.0150 inches and concrete

strengths from 2700 to 8120 psi. Figure 3-21 illustrates typical

data for a concrete with f' = 4810 psi. There appears to be a

linear relation between shear stress (agerage) and interface slip

until additional diagonal and flexural cracks appeared in the test

blocks. As can be observed, the slopes of the shear stress versus

slip curves decrease with increasing crack width. It was also found

that increasing concrete strength increased the shear stress versus

slip slope for a given crack width, but the effect of strength

increase on stiffness was not as pronounced as that of crack width.

A decrease in slope occurred with the onset of additional cracking.

Loeber (I05 ) performed similar IST tests, but on specimens

with a larger shear area (A = 33.5 in2 for Loeber, A = 12.25 in2

for Fenwick), Figure 3-22. Reinforcing ties were placed in the

specimens to limit additional cracking as shear was applied. The

concrete strength used was a nominal 5000 psi and the crack width

ranged from 0.005 to 0.020 inches. Representational results from

Loeber's tests are shown in Figure 3-23. Loeber's tests show

greater slopes and capacity than do those of Fenwick, perheps

because of the added reinforcing ties which limited additional

cracking. In both tests, however, the slope of the (average) shear

stress versus relative slip is a strong function of the crack width

with a decrease observed where the crack width was increased. Based
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on his tests, Loeber also indicated that the size and type of

aggregate do not have a large influence on IST.

Houde and Mirza (1 06 ,1 0 7 ) conducted an experimental program

using test specimens similar to Fenwick. The crack width range for

these tests was 0.005 to 0.020 inches. Typical results are shown in

Figure 3-24. A new feature of this test data is an initial "free

slip" observed at the onset of loading for crack widths greater than

0.01 inches. This slip (= 0.0015 inches) is attributed to relative

free displacement that occurs before asperities on either side of

the crack surface come into contact. After the initial free slip,

the shear-slip response is linear until additional cracks occur in

the test blocks. The main parameters influencing IST were cited as

the crack width and the concrete strength.

White and Holly ( 108 ) studied IST using two 'rigid' blocks

with a preset crack between them, Figure 3-25. The external

restraining bars* shown provided a constant 'stiffness' normal to

the crack; this is in contrast to the previous tests which were

conducted at constant crack widths. The shear loading was applied

cyclically in a range of 120 to 160 psi. Typical response for

(average) shear stress as a function of shear slip, average crack

* width, and increase in restraining bar force are shown in Figure

3-26. Within the stress range of 120 psi, relatively small slips

are produced during the first cycle of loading, and little increase

in slip occurs even after 25 cycles of loading. After 25 cycles,

the shear stress is increased monotonically to approximately 400

psi. Appreciable increase in slip, further crack opening and

corresponding increase in bar forces were observed for this

monotonic increase. It is noted that these specimens exhibited a

ductile behavior which was not observed in the specimens tested with

constant crack widths.

*These bars were intended to represent the restraining forces
provided by embedded bars in actual reinforced concrete. The
technique allows one to separate IST and dowel effects.
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A study using experimental specimens similar to those used by

White and Holly (108 ) was conducted by Laible. (109 )  Here thirty

direct shear specimens with a shear area of 150 and 300 in2 were

used in a study of IST. The parameters addressed were specimen

geometry, aggregate size and quality, concrete strength, magnitude

of cyclic shear stress, effect of initial crack width, effect of

degree of reinforcing restraint across the crack (normal stiffness),

and the age of concrete. The measured quantities were horizontal

slip along the crack, increase in crack width, and increase in

restraining steel force. The cyclic shear stress applied ranged

from 100 to 270 psi, but the majority of the tests were cycled at a

shear stress level of 180 psi. Typical first and 15th cycle load-

slip displacement curves are illustrated in Figure 3-27. It can be

observed that, although the first level phase is nearly linear,

appreciable residual displacement results upon unloading. Subsequ-

ent loading cycles exhibit an initial small slope followed by a

sudden increase in slope. The unloading stages show higher stiff-

ness than the loading. The initial crack width range in these tests

was from 0.01 to 0.03 inches. In general, the increase in crack

width as the shear force was applied was small in comparison to the

initially prescribed crack width. The authors note that the bar

forces induced by asperity overriding from the applied shear

4stresses were a small percentage of the force required to cause

yielding of the bars (This information, however, may be very mis-

leading since the bar stress distribution in an actual reinforced

concrete specimen depends strongly on the degree of debonding that

has taken place (debonded length)).

3.3.2 DOWEL ACTION, COMBINED IST AND DOWEL ACTION

Jimenez-Perez,. et al.(110,111) conducted an experimental

study of IST, with and without dowel action. The test setup used is

shown in Figure 3-28. Eight specimens were used for the combined

IST and dowel mechanism and five specimens for the dowel action

alone. Embedded reinforcing bars were used for the study. Initial

tensile stresses were applied to the bars to initiate cracking at a
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Figure 3-27. Typical shear stress v. shear slip results for
1ST tests performed by Laible.
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predetermined plane (see Figure 3-28). The axial stress was then

increased in increments to a maximum of 40 psi (rebar stress). In

each stage measurements of the crack width opening and bar stresses

were taken. The axial stress was then adjusted to accommodate a

desired initial crack width. Shear loading was subsequently applied.

From the combined IST and dowel tests the following behavior

was observed: the increase in crack width was insignificant within

a range of shear stress up to 200 psi. A noticeable increase

occurred only when failure was imminent. The increase in axial

stress from the application of shear was normally less than 10

percent of the ultimate axial bar capacity. Figure 3-29 depicts

typical load-slip behavior for the combined action tests. Cycle 1

and Cycle 15 shear stress versus shear slip response curves at

different stress levels are shown. From the magnitude of the slips

observed at these stress levels, it can be inferred that the

combined mechanism with large diameter (No. 14) embedded bars shows

slips less than half those observed in IST tests performed by

Laible. (109 )  Also, though the load-slip behavior of the combined

action specimens is similar to the displacement curves produced by

Laible's test, the residual slips were not as pronounced.

Specimens reinforced with No. 9 and No. 14 bars were used to

study the dowel action mechanism alone. For this purpose the crack

surface is replaced by a smooth lubricated surface. A typical shear

stress versus relative displacement response for dowel action is

illustrated in Figure 3-30. It is observed that, in comparison to

the combined mechanism, much larger shear slips are necessary to

develop shear resistance through dowel action. Note that the

specimen without initial tensile stress exhibits a stiffer behavior

than the specimen stressed initially at 30 ksi. It was concluded

that individual bar dowel 'stiffness' increases with bar size, but

for larger bars where concrete deterioriation may be more

significant around the bar, the 'stiffness' was at time lower than

the smaller bars. Tensile stress in the bars has a deterioriating

effect on the dowel stiffness since it causes more localized bond
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failure. Most specimens used to assess dowel action failed by

concrete splitting.

Based upon the above tests, the authors have attempted to

determine the relative amounts of shear taken by each mechanism.

Using compatibility arguments and the load slip behavior of the

combined mechanisms versus dowel action alone, it was concluded

that, for the specimens considered, interface shear transfer assumes

65-75 percent of the total applied shear while the dowel action is

responsible for 25-35 percent of the applied shear.

Another test program worthy of mention here is due to

Duluscka,(112) who conducted a test program on dowel action with a

goal to establish theoretical load-deformation relations for cases

where steel is oblique as well as normal to a crack surface. The

test setup for these experiments is shown in Figure 3-31. To

simulate cracks, two layers of 0.0078-in-thick sheet brass, which

was connected in the middle by a skewed steel stirrup, were embedded

in the test specimens. During testing, relative slip along the

simulated crack and opening of the crack perpendicular to the

direction of the load were recorded. Due to the sheet brass,

aggregate interlock was not a factor in this study, i.e., dowel

action alone was investigated.

Experimental results for the failure load in the bar were

found to correlate well with the following relation:

Tf = P2yayn 21
3py a yn sin y)

where

Tf = Failure load of dowel shear
= Bar size

8 = Angle of stirrups in degrees
0y = Yield stress of steel

c  = Cube strength of concrete

n = Coefficient of local compression of concrete
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= Constant

p = 1 - N2/N2

y
N - Axial tensile force in bar

N = Axial force inducing yield in pure tension.

Duluscka concluded that, from the test results, a reasonable

emperical fit of the slip versus dowel shear load was

A =-XFTL tan (3.4)

where

A - Constant

T = Dowel shear load

Tf = Failure load of dowel shear computed from Equation

(3-1)

Equation (3-2) was plotted as a function of T and a for two
values of 6 = 10° and 40" respectively, as shown in Figure 3-32.
The results indicate that an increase in the angle 6 results in a
decrease of the dowel shear force T and an increase in the bar's
normal force N. Also, an increase in the concrete strength ac
results in an increase of dowel shear capacity Tf.

3.3.3 Issues

Information on IST, dowel action, and combined IST and dowel
action represents a critical link in the constitutive model con-
struction chain. The preceding information constitutes a repre-
sentative cross-section of the available data on these subjects. An
evaluation of this work leads us to the conclusion that additional
testing is necessary in order to adequately define the mechanics of
the IST, dowel, and combined IST and dowel problems. Such testing
should be conducted, in contrast to most previous studies, under
displacement control using a closed loop servo-controlled test

system.
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SECTION 4

PREVIOUS CONSTITUTIVE MODELS: PLAIN CONCRETE

In this section, previous work on constitutive relations for

plain concrete is reviewed for background purposes. The discussion

is partitioned into (1) uniaxial relations (subsection 4.1), (2)

biaxial relations (subsection 4.2) and (3) multiaxial relations

(subsection 4.3).

4.1 UNIAXIAL CONSTITUTIVE MODELS

The usual constitutive assumption for concrete in uniaxial

tension is linear elasticity, with complete failure occurring when

the stress reaches ft For monotonic compressive response many

nonlinear stress-strain laws have been postulated. Typically they

were designed for use in reinforced concrete beam design and are of

tne form

. = f(E) (4-1)

Eq. 4-1 is not immediately suitable for nonlinear finite ele-

ment analysis where an incremental stress-strain relation is

needed. Further the representations do not admit obvious general-

ization to multiaxial stress states. The principal usefulness of

equations of the form of Eq. 4-1 is as hardening functions for use

in multiaxial constitutive models.

Popovics (113 ) summarized equations of the form Eq. 4-1 and

they are given below:

a= Ac n , (4-2)

a = E E [1 + (3Eo/E - 2) (/cO ) + (4-3)

(1 - 2E0/E) c/o)I2]

Ec
1 + (E/E0 - 2) (W"/o) + co 2 (4-4)
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* = E c (1 - €12c 0)  ,(4-5)

* = B c (1 + Ccn l) , (4-6)

*= Ec (4-8)
D + ( /)n

o = E c exp (-c/c) , (4-9)

a = E c exp [ - (Ec - 2)mF] , (4-10)

In these equations E and co are the secant modulus and

strain at a = f ' and E is the initial tangent modulus. Para-

meters A, B, C, D, F, m and n are constants. Eq. 4-2 does not model

softening. Equations 4-3 and 4-4 would model softening if cubic

terms were added. Equations 4-5 and 4-7 are special cases of Eqs.

4-3 and 4-4 with E/Eo = 2. Equations 4-5, 4-6, 4-7 and 4-9 are
less flexible than the others because they predict a fixed value for

E/E0 when in reality the ratio can range anywhere from 1.3 to 4.

Equation 4-4 was due to Saenz (114 ) and was used by Darwin and

Pecknold in the development of their biaxial theory of cyclic

response which is discussed in the next section.

Additional formulae have been postulated by Kriz and
and1by (116)

Lee 1  and by Popovics
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4.2 BIAXIAL CONSTITUTIVE MODELS

* In this section consititutive models developed specifically to

describe the biaxial response of plain concrete are discussed.

Three-dimensional theories which, of course, are based in part on

biaxial data and can describe plain concrete biaxial response are

reviewed in Section 4-3. Multiaxial theories of plain concrete

response have only appeared in the last ten years and are mainly

generalizations of elasticity and plasticity. In the presentation

below it is convenient to divide the theories into three categories.

4.2.1 Nonlinear Elasticity Models

The first biaxial constitutive theory developed by Kupfer and

Gerstle (1 17) was in matrix form,

T T (-1

] , T ( x , 
0y, xy) , £ ( x y(Cx, c xy) (4-11)

x xy Xx

where [D, a matrix of secant moduli, was itself a function of

stress and strain measures. The constitutive model assumed concrete

always behaved isotropically thus precluding oriented damage arising

from microcracking. More importantly, while the model did replicate

monotonic loading results for biaxial compression and compression-

tension, it was unable to adequately simulate any cyclic stress-

strain response since the theory predicted that unloading occurred

along the loading path. Consequently, the theory predicted neither

energy dissipation nor residual anelastic strain during unloading.

Thus the theory, when specialized to uniaxial cyclic response was

totally inadequate. Subsequently, Murray (118 )  corrected the

definition of tangent moduli given by Kupfer and Gerstle but did not

address any of the theory's shortcomings.

Nilson, Slate. and their co-workers (1 19'120'121 ) developed a

nonlinear elasticity theory based on a generalization of Saenz's

representation for concrete uniaxial response. The authors first

considered a single component of stress, axv for biaxial compres-

sion and compression-tension and showed that
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ax = f( x cx) Cx ' = a y/Ox (4-12)

modeled available data well, where f was a judiciously chosen func-

tion and cx was the strain component corresponding to ax .  Para-

meter ax was used to account for biaxiality effects.

Next the authors attempted to introduce stress induced aniso-

tropy by postulating

= =[] X (4-13)

where [0] was a material property matrix with form appropriate to an

orthotropic material:

c (4-14)
S0 0 d

and parameters a, b, c, d were functions of ex , Cy and ax"

Since the constitutive equation expressed total stress in terms of

total strain, parameters a, b, c and d had the character of secant

moduli. However, in their evaluation the authors expressed them in

terms of variables that were tangent modulus-like in nature.

In the present notation a typical tangent modulus was defined

to be df(axx )/dex. But in reality the value af(ax'
x x

Ex)/3Cx was used; ax was held constant even though it was a

function of stress. Parameter d was determined using an ad hoc

assumption that resulted in dropping an undesired term. Further,

the parameters were defined in terms of strain components in such a

way as to be sensitive to coordinate axis orientation.

It is not clear from the authors' presentation what was in-

tended when unloading took place. Anisotropy was introduced to

account for stress induced oriented microcracking, but it appears

that on unloading to zero stress the physically irreversible micro-

cracking would disappear from the model and on reloading the mate-

rial would behave as though it were virgin.
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Neither of the nonlinear elastic models had criteria for

determining when either crushing or cracking failure of concrete had

occurred. Also, the models were not used to simulate structural

response and so no evidence is available to establish model predic-

tive capabilities. However, because the models are nonlinear

elastic and thus fully reversible, while concrete is a microcracking

material and thus experiences irreversible phenomena, it is

concluded that these models are of limited practical interest and

are not suitable for the prediction of the response of concrete

structures to general classes of loading.

4.2.2 Plasticity Models

Several authors have developed plasticity theories for simulating

concrete biaxial behavior. In small strain, small displacement

plasticity total strain is assumed to have the additive decom-

position,

a = e + P , (4-15)

where e and are the elastic and plastic strain contributions

respectively. The elastic strains are governed by the usual rules

of elasticity. Plastic strains start to occur when the stress state

a at a point in a structure is sufficiently high that it satisfies

f(a,%) = 0 . (4-16)

The function f is called the yield function and is assumed to

be a material property. The vector a is a set of material para-

meters that characterize the amount of plasticity experienced. As

the stresses increase beyond initial yield a changes and a is con-

strained to satisfy Eq. 4-16.

When plotted in stress space the yield function defines a

yield surface. A material is perfectly plastic if the a is constant

in which case the yield surface has constant position, shape and

size, otherwise the material is work hardening.
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In metals plasticity the failure curve for biaxial loading is

an ellipse centered at aI = a2 = 0 with major and minor axes

along a1 = a2 and a = -a2 respectively. Clearly the fail-

ure surface for concrete differs markedly from an ellipse. There-

fore the plasticity theories of metals cannot be applied to concrete

without some modification. In particular concrete failure, unlike

metals failure, (1) depends on the level of hydrostatic pressure and

(2) is different in compression and tension. Plasticity theories

are nonlinear and the constitutive law for the plastic strain eP

is incremental. A plastic material is said to satisfy normality and

have an associated flow rule if an increment in plastic strain is

determined by

Ap 39 a_ (4-17)

where f is the yield function and A a deformation dependent para-

meter. Geometrically Eq. 4-17 implies that iP has direction

parallel to the normal to the yield surface Eq. 4-16 at the current
level of stress. If P is not determined by an equation of the
form Eq. 4-17 then the incremental curve is a non-associated flow

rule.

When plasticity models are employed in finite element

analyses, the analyses are performed incrementally. The total load

P is divided into a series of steps or increments APk , k = 1,2,

.. , and the load increments applied successively. At the

beginning of an increment existing stresses and strains are known

and the objective is to compute increments g, &c, &J, Au in

stress, strain, plastic strain and displacement corresponding to
k

load increment AP During a load increment the structure is
assumed to behave linearly with the plastic strain increment given
by A p = CpAt).

Perfect plasticity models. Perfect plasticity models have

been proposed by Hand, Pecknold and Schnobrich( 122) and by Lin and

Scordelis (123) These models assumed concrete to be bilinearly
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and linearly elastic, respectively, until stresses reached the bi-

axial failure envelope, i.e., no irreversible damage occurred to the

concrete until the failure surface was reached. For compression-

tension and tension-tension concrete was assumed to experience ten-

sile cracking failure when the stress reached the failure surface.

Cracking failure was simulated by setting to zero the tensile stress

and stiffness parallel to the maximum tensile stress.

In the compression-compression quadrant of biaxial stress

space, response subsequent to reaching the failure surface was

assumed perfectly plastic and finally crushing failure occurred

according to a crushing strain criterion. Hand, et al., used the

failure surface obtained experimentally by Kupfer, Hilsdorf and

R*sch while Lin and Scordelis employed the von Mises yield surface

of classical metals plasticity. The authors incorporated their

models into nonlinear finite element codes and for several different

monotonic loading analyses of plate and shell structures obtained

tolerable accuracy for overall load-deflection results.

The philosophy of the perfect plasticity models was totally

different from that used in the nonlinearly elastic models. In the

latter, care was taken to replicate the biaxial stress-strain

response up to failure while in the present models, attention was

focused on response after reaching the failure surface, and from the

results of the perfect plasticity models it appears that satisfac-

tory simulation of concrete performance degradation mechanisms is a

prerequisite to adequately predicting response under severe

loading. Hand et al., and Lin and Scordelis did not use their
models to predict structural failure loads, and did not build into

their models any ability to simulate strain softening (a further

performance degradation mode) and cyclic response. Finally the

*models could be expected to predict stresses and strains poorly

because no attempt was made to incorporate stress-strain data into

the models.

Three promising models of plain concrete biaxial response

based on work hardening concepts were developed by Buyukoz-

turk, ( '24 ) Chen (125-129 ) and Murray. (130-133)
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Work Hardening Theory of Buyukozturk. The theory of Buyukoz-

turk was the simplest of the work hardening approaches. In the com-

pression-compression quadrant of biaxial principal stress space the

failure surface was represented by the generalized Mohr-Coulomb

relationship

3J2 + fcI + 1 /5 = (fc)2/9 (4-18)

where I, = Ox + y, and J2 was the second invariant of the

deviatoric stress tensor sij

11
2= sij sij ' sij - 0ij - T kk 6ij

In the compression-tension quadrants the failure surface was

straight lines drawn between the uniaxial tensile and compression

strengths f' and f' while in the tension-tension quadrantt c
failure occurred when the maximum tensile stress reached fi.

Buyukozturk assumed that concrete response was linearly elas-

tic up to failure for stresses in the tension-tension quadrant and

applied plasticity only to the remaining quadrants. The initial

yield surface, which was taken to be Eq. 4-18 with f' replaced byc
fcI3, was used in the compression-tension quadrants as well as the

compression-compression quadrant. Thus the plasticity part of the

Buyukozturk theory replaced Eq. 4-16 with

f(2,W) = 0 (4-19)

where initial yield and ultimate failure corresponded to F = fc/3

and fc respectively. An associated flow rule was employed and thec
variation of F with plastic strain was assumed derivable from uni-

axial, compressive stress-strain information alone.
Buyukozturk noted that his theory predicted greater strains

for a given level of stress than was found experimentally. He

attributed this to the inability of his theory to account for sen-
sitivity of the stress-plastic strain response to the ratio of
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principal stresses. In his theory only a single principal stress

ratio was used to define theory parameters.

It is not clear from the author's discussion how he modeled

the response of concrete once the stress state reached the failure

surface. Two failure types were identified - tensile cracking and

compressive crushing. Tensile failure occurred whenever a tensile

principal stress reached the failure surface. Subsequent to a ten-

sile failure, the material was assumed to have zero tensile stiff-

ness in the failed direction. However, it is not stated that the

tensile stresses that existed at failure were subsequently set to

zero.

Crushing failure was assumed to occur when a compressive prin-

cipal stress reached the failure surface. Based on existing uni-

axial data, concrete behavior after the stress reaches the failure

surface should involve progressive load shedding followed by a final

complete loss of stiffness and stress. No indication is given of

how Buyukozturk simulated crushing.

Only analyses of monotonically loaded structures were per-

formed using the above theory. The global response of the struc-
tures were only mildly nonlinear and, where experimental data

existed, predicted failure load was seven percent less than the

actual failure load.

Work Hardening Theory of Chen and Chen. Chen in a series of

papers(125-12 9 ) developed an alternative work hardening theory

where initial yield and final failure surfaces were of the form

2
=C c g ys 2 1 + - TI 2 =0(4-20)

= (I - (a i1 /3))

where

0 for compression-compression

-1I/6 otherwise.
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Parameters a and B were material constants with one pair of

values for compression-compression and another pair for other stress

states. Initial yield, subsequent yield and final failure surfaces

are shown in Figure 4-1 where it can be seen that the surfaces have

discontinuous normals along the simple compression directions.

Parameter T measured the amount of work-hardening and hence

the size of the yield surface for stress states between the initial

yield and final failure surfaces. It was assumed that

T2 =g(€ p) p CPk p ak p (-1
Ti € k ijkp ,kpa ij (4-21)

where ep was the equivalent plastic strain and the plastic strain

increments akCij were determined by the associated flow rule Eq.

4-17 for each step k of the incremental analysis. Chen and

Chen, (125) paralleling the later work of Buyukozturk, could not

find a unique form for the function g from experimental data and so

used an averaging process. They took the biaxial data of Kupfer,

Hilsdorf and Rtsch (36 )  and for each stress ratio 1/02 com-

puted f from the stress data and cP from the corresponding strain

data, resulting in two families of curves, Figure 4-2. The authors

then averaged the two sets of data to define g as two functions,

*Figure 4-3, one function being used for biaxial compression, the

other for compression-tension.

The Chen and Chen theory was only applied to the simulation of

plain concrete specimen responses. (126 -128) In these analysesjconcrete at a point failed when the stress reached the failure sur-

face. Post failure response was modeled by maintaining the stresses

that existed at failure and permitting no stress increase. With

this post failure model Chen and Chen (12 7) simulated the concrete

cylinder splitting test and predicted a tensile failure strength of

concrete to be only seven percent greater than that given by the

ASTM formula.
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More recently Chen and Suzuki (129 ) incorporated a two-part failure

criterion into the model. Failure was assumed to occur if either

the stress satisfied

f(o,s,8,y, Tu) = 0 (4-22)

or the strain reached the strain envelope shown in Figure 4-25. The

first criterion implied that the stress lie on the usual biaxial

failure surface and it is not clear under what circumstances the

strain failure criterion would be satisfied before the stress

criterion. Two fracture types -- tensile cracking and compressive

crushing -- were defined with crushing occurring only for biaxial

compression states. When cracking occurred tensile stiffness and

stress parallel to the maximum tensile principal stress were

immediately set to zero thus simulating the presence of a crack.

Compressive stiffness perpendicular to the crack as well as stiff-

ness and stress parallel to the crack were unaffected. The

possibility of subsequent additional cracking was also accounted

for. When crushing occurred all stress and stiffness were

immediately set to zero simulating complete loss of any load

carrying capability.

Using the new failure criterion Chen and Suzuki analyzed the

cylinder splitting problem and predicted a dramatic 48 percent

decrease in strength relative to the previous result. Although the

previous result had been reasonably accurate the authors gave no

indication that they thought the new results were in error. How-

ever, it is possible that the new failure model was physically and

numerically too severe especially for crushing failure. It is

reasonable to assume that once peak stresses are achieved at a

point, strain softening occurs resulting in a gradual shedding of

stresses and reduction of stiffness rather than the immediate total

shedding implied by the model. In a nonlinear finite element

analysis stresses are accumulated over several loads increments so

that the computer code can follow growing areas of material non-
linearity. A sudden shedding of stress cannot be accurately
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simulated in one load increment. Thus spurious overloading of

neighboring finite elements results and an unrealistically low

fracture load predicted. The correct way to simulate concrete

crushing failure is to reduce the loads in the failed region over

several load increments.

The biaxial constitutive theory developed by Chen and co-

workers has not been applied to reinforced concrete structures or to

the modeling of cyclic effects. Currently, the post-peak failure

model appears to be too severe. Thus usefulness of the theory lies

in predicting the stress-strain response of biaxially loaded plain

concrete structures for cases where significant material nonlinear-

ities are present but complete failure is not anticipated.

Additionally it is undesirable to have a yield surface with a

discontinuous normal along the uniaxial compression directions since

it complicates the fitting of an associated flow rule to uniaxial

data.

Work Hardening Theory of Murray et al. lhe novel feature of

the theory developed by Murray et al., was the definition of

* three hardening functions. One function, ac' accounted for

hardening in compression while the remaining two, at,, at2'

allowed tensile hardening to occur independently in the two princi-

pal stress directions. The initial yield, subsequent yield and

final failure surfaces were given by

f(4,1) = 0 (4-23)

where , = (al 1 Q2 ' 3 ) = (11 1 tl' I t2) denoted the three

hardening functions. In an earlier version of the theory, 131 j

* only one tensile hardening function was used. The failure surface,

shown in Figure 4-5, was taken to be that of Kupfer, Hilsdorf and

RUsch, and was modeled piecewise using four or five complicate6

functions.
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Plastic strain incrmements were governed by an associated flow

rule and the hardening parameters were assumed to vary according to

ai =i + Bi(yi) , i = 1,2,3

= E 6k AkcP A k kp = (k p P)1/2

k

ak + 6k + = 1 (4-24)

where 1i were values of ai at initial yield, 8i were hardening

functions, yi were equivalent plastic strain measures, k denoted

load increment number, AkC' was the total equivalent plastic

strain increment for increment k, and the 16 's were increment depen-

dent apportioning constants. Hardening function o1, was deter-

mined using only uniaxial compression data in the same manner as

Chen and Chen. The other hardening functions 82 83 were ob-

tained from uniaxial tension data. All three functions included a

strain softening branch. The '6's were constants with values from

zero to one. When the stress state lie in the biaxial compression
Itension I quadrant only compressive tensile equivalent plasticIk kk = 0 -=0 Instrain measure(s) were changing and 2 3 1

the compression-tension quadrants 62 and either 63 or 61 were

non zero and were determined by the ratio of the existing principal

stresses.

Murray and co-workers compared the biaxial stress-strain re-

sponse predicted by the theory with the experimental data of Kupfer,

Hilsdorf and Rutsch, Figure 4-6. Since the hardening functions were

based on uniaxial data it is not clear why the correlation with

uniaxial results is poorer than with biaxial compression results.

Also, the theory does not predict the tensile response accurately in

compression-tension. In general, results are best for biaxial com-

pression and again it is seen that theoretical predictions for

biaxial stress-strain are not uniformly accurate when the hardening

functions are derived from only uniaxial data.
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An analysis of a prestressed concrete panel was performed

using the constitutive theory; a discussion of the steps necessary

to incorporate the theory into a computer code is given in Refer-

ences. (132',133) In the analysis, results for load versus deflec-

tion were found to be sensitive to how the post peak tensile

behavior was simulated. Initially, in the tension-tension quad-

rant, a linearly elastic - perfectly plastic model was used. Thus

cracking and concomitant stress reduction were not considered.

However, predicted structural response was significantly stiffer

than that observed experimentally. When concrete tensile response

was subsequently simulated using a strain softening branch, so that

'tensile stresses were shed after reaching a peak value, predicted

results matched experimental quite closely. Thus again, it is seen

that to adequately predict gradual softening of a structure's re-

sponse it is necessary to incorporate into the model mechanisms for

progressive performance degradation.

Murray's theory exhibits the same shortcomings as previously

discussed theories; an inability to simulate monotonic biaxial

stress-strain response with uniform accuracy and a lack of a cyclic
response model. Additionally no details are given for handling

final crushing or tensile cracking. Finally, compared to the models

of Buyukozturk and Chen and Chen, the mathematical descriptions of

yield and failure surfaces are overly complicated. Therefore, while

the theory does accurately predict monotonic structural response

there is nothing to recommend the theory over the previous, simplier

theori es.I Of the three work hardening, plasticity theories of concrete

I response none is obviously superior in its predictive capabilities.

Thus the Cnen and Chen model appears preferable because it simulates

concrete stress-strain and failure using a relatively simple mathe-

matical representation.

4.2.3 Biaxial, Cyclic Response Models

None of the preceding theories attempted to simulate the

cyclic response of concrete when subjected to biaxial loading.
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Darwin and Pecknold(134,135,136),have been the only authors to

develop a concrete biaxial constitutive theory with the principal

objective of modeling cyclic response. The theory was not based on

plasticity theory concepts but rather was an extension of uniaxial

results previously reported by Saenz, 1 37) for monotonic loading

and by Karsan and Jirsa (138) for cyclic loading. An incremental

stress-strain law was postulated since the model was intended for

use in nonlinear finite element codes. For a single increment of

externally applied load or displacement the stress and strain

increments were assumed linearly related and governed by the

orthotropic relation:Ea, do ~ 2 0 -e
da4 + 1 E V ( ) E]2  0 dY] (4-25)

dT _ - 0 0 (1-V2)GJLdy J

where at each point in the structure the coordinate axes were

aligned with principal stress axes at the beginning of the incre-

ment. In the equation doI  and do2 were increments in stress

components referred to the local coordinate system and not incre-

ments in principal stress components. Moduli E1  and E2  were

assumed dependent oofthe existing state of strain and G was defined

in terms of E1 , E2 and v so as to be independent of local coor-

dinate axis orientation.

The strain dependence of El and E2 was accounted for by

first defining 'equivalent strains' £1ul c2u" At the end of the

nth load increment these strains were given by

n k k-1
= 1 1 i = 1,2 (4-26)

1 u E. E.k-

k=1
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Here o. and Ee were the principal stress and tangent modulus in

the it A direction at the end of the kth load increment. For

initial loading up to maximum attainable stress the authors assumed

i E +E iUE02 (4-27)

I S ic \SCic/

where E was the concrete initial tangent modulus. Further Es =

Oic/cic where oic was the stress on the Kupfer, Hilsdorf and

RUsch failure surface for the current principal stress ratio,
Gla 2  and ic was the corresponding strain. Eq. 4-27 was a

generalization of the uniaxial model of Saenz. (137) E was then
defined by

Ei = dai/diu . (4-28)

To complete the monotonic loading theory mathematical representa-

tions were developed for the Kupfer, Hilsdorf and Rlisch failure

ik surface and for the corresponding strain envelope. (134 ) Also

Poisson's ratio v was assumed stress dependent for uniaxial compres-

sion and biaxial tension-compression and equal to 0.2 otherwise.

Because extensive use was made of the Kupfer, Hilsdorf and RUsch

data in the definition of the functional forms of model parameters,

the constitutive model replicated that data very well.

The principal objective of Darwin and Pecknold was to simulate

cyclic biaxial response in the post-peak stress region. Since no

cyclic biaxial data existed, the authors used as their, starting

point the uniaxial data of Karsan and Jirsa.(138) Karsan and

Jirsa found that the peak stresses for successive cycles of

uniaxial, compressive load lay approximately on a single "envelope"

curve, Figure 4-7, and that upon unloading to the null stress state,
Figure 4-7, the residual plastic strain cpi was related to the

strain ei on the envelope curve at the point of unloading by
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2

= 0.145 + 0.13 (4-29)
i u eC cu iu

where iu was the uniaxial strain corresponding to the uniaxial
compressive strength.

Karsan and Jirsa also defined a 'common point' curve. When

unloading occurred from any point on or above the common point

curve, such as points 1, 3, 4, 5, 6 in Figure 4-8, the reloading

curve always intersected the unload curve where the unload curve

intersected the common point line (i.e., points A, B, C, D). When

the initial point of unloading was beneath the common point curve

(i.e., points 7, 8) the reload curve always passed through the point

of initial unload.

Darwin and Pecknold incorporated the residual plastic strain

relation and the common point curve into their theory, and in

addition introduced a 'turning point' curve which controlled the

width of unload-reload loops and hence the amount of energy dissi-

pated during a load cycle. A typical piecewise linear load cycle

ABCDEF is shown in Figure 4-9. Segment A B joins the envelope and

turning point curves and has the same slope as the concrete initial

tangent modulus E0 . The intersection of A B with the common point

curve defines point E. Point D is defined by Eq. 4-29. Unloading

from B to the null stress state at C is along a trajectory parallel

to 0 E. Subsequently the strain is reduced to point D before any

reloading can occur. Monotonic reloading from D terminates at F

after which the response follows the envelope curve. Figure 4-10

shows that by judicious choice of the common and turning point

curves, Darwin and Pecknold were able to match the Karsan and Jirsa

data reasonably well.

Darwin and Pecknold also included post-crushing and fracture

behavior in their model. Crushing failure occurred when the equiva-

lent strain in either principal direction reached 4 Cu. Tensile
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Figure 4-7. Uniaxial, cyclic, compressive stress-strain history
showing envelope curve.
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Figure 4-10. Comparison of Darwin and Pecknold proposed model
results with experimental data of Karsan and
Jirsa.
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failure occurred along the two principal stress directions indepen-

dently. After tensile cracking, tensile stiffness perpendicular to

a crack was null, compressive stiffness was unchanged, shear stiff-

ness parallel to the crack was reduced, but not zero, and cracks

were allowed to open and close.

Nonlinear finite element analyses were performed and, using
the developed theory, cyclic loading of reinforced concrete panels

were modeled. In Figure 4-11 is shown a comparison between the

experimental load-deflecton results of Cervanka and Gerstle, £139'

and the predictions of Darwin and Pecknold. (135 )  Results for the

first one and a half load cycles are shown and the agreement between

theory and experiment was very satisfactory. The authors attributed

the quality of the agreement to the inclusion in their theory of,

(i) cyclic effects, (ii) independent tensile failure in the two

principal stress directions.

4.3 TRIAXIAL CONSTITUTIVE MODELS

Triaxial constitutive models of concrete fall into several

categories. The simplest approaches are little more than nonlinear

elasticity while the most complicated defy clear non-mathematical

discussion. In the following the theories are divided into

, variable modulus

0 hypoelasticity

* elastic plastic

* plastic fracturing

* endochronic.

4.3.1 Variable Modulus Models

Theories have been developed by Ahmad and Shah, (140)

Decolin, Crutzen and Dei poli,(141) Elwi and Murray(142) and

Kotsovos and Newman. (143) Typically the models are parameterized

curve fits lacking any justification other than they fit selected
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Figure 4-11. Comparison of cyclic panel
response predicted by pro-
posed model of Darwin and
Pecknold with experimental
data of Cervanka and Gerstle.
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sets of test data. Ahmad and Shah generalized the uniaxial curve
fit of Saenz Eq. 4-4. Elwi and Murray took the same curve fit and

defined an incremental stress-strain law for axisymmetric deforma-

tions only. The approach paralleled that of Darwin and Pecknold

(subsection 4.2.3). Cedolin et al. and Kotsovos and Newman gen-

eralized linear elasticity my making the bulk and shear moduli

functions of stress invariants 11 and J2" The principal

shortcomings of these models are

* They are only designed for monotonic load histories
since they unload along a loading path and preclude
irreversible effects.

* Most assume strain and stress principal axes always
coincide.

0 They are unsuitable for insertion into nonlinear
finite element codes because they are formulated
only in terms of principal stress/strain directions
which typically do not coincide with problem
coordinate axes. Additionally most models are total
stress-total strain relations while finite element
codes require nonlinear models be written in terms
of incremental stress and strain quantities.

* They have not been used to model the response of
even the simplest structures.

4.3.2 Hypoelastic Models

Coon and Evans (144 ) starting from the general representation

of a hypoelastic material developed an incremental stress-strain

law of the form

- daij = Ai (apq) dc (4-30)
1. ikl pq kl

After assuming concrete to be isotropic the authors reduced

Aijkl to a linear function of stress depending on seven material

constants. A unique feature of Eq. 4-30 was stress induced

anisotropy. Concrete failure was not an additional assumption but

rather occurred when

185

.~.. ~ . ... * **~.*'*.\:. **vJ



det Aijkl = 0 . (4-31)

i.e., when additional strain could occur without stress change. The

theory was used to replicate the experimental data of Richart,

,.- ., Brandtzaeg and Brown 723 and of Gardner.[1463 The seven con-

stants in Aijkl were assigned values without discussion and the

failure surface was circular on planes of constant pressure. The

correlation obtained between stress-strain response predicted by Eq.

4-31 and the experimental data was less satisfactory than that

customarily found using other theories. Finally, at any stress
state, loading and unloading directions in stress space were

parallel. All in all this theory has little to recommend it.

4.3.3 Elastic Plastic Models

The biaxial plasticity models discussed in section 4.2.2 can
' ~be extended to triaxial stresses; however their failure surfaces on
-. planes of constant pressure are circles. Two theories that were

explicitly developed for triaxial application but still have this

weakness are due to Green and Swanson [76] and Dimaggio and
Sandler.[

147]

The first theory assumed that the elastic region of stress

space was bounded by two surfaces, F1 and F2, given by

F FI  = V2 + g(1) - K = kk

F2  + r2 1- K2  (4-32)[ ][ (x-800)
g(x) = -1000.1 2.2-liex/4

0000) -e 00

Parameter r was a constant while K1 and K2 were strain hardening

functions that controlled the expansion (i.e., motion) of the sur-
faces. By using the two functions F1  and F2 the authors were
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able to predict both specimen contraction (surface Fl) and dilata-

tion (surface F2 ) that occurs in uniaxial compression. Failure

was governed by assigning a limiting value to K1 . Strain harden-

ing functions K1 and K2 were assumed given by

dcp = h dK1  , dcPc = h2 dK2  (4-33)

where h, = hi(I, T2) h2 = (11 J 2 ), & P : .dP.-

Thus dKI was related to the total plastic strain movement
while dK was related only to dcP c , the increment in plastic

d2 wsrltd nl to vc
plastic volumetric shrinkage arising from motion of surface F2.

The authors found it difficult to justify the choice of Eq. 4-33.

An associated flow rule was assumed, so

-A aF + . aF2

b,'

-j I aij 2 3ij (4-34)

and standard plasticity procedures were used to obtain an incre-

mental stress-strain law. The theory was applied to the simulation

of specimen data with mixed success. As a test of the theory a set

of thick-walled cylinders subject to axial compression and in-

ternal pressure were tested and then modeled. Again some of the

tests were simulated well while other correlated poorly and the

authors were unable to explain unevenness in the correlation.

The theory of Green and Swanson had some obvious shortcomings

0 Failure surface was axisymmetric about pressure axis.

* Unloading and reloading was entirely elastic.

* No strain softening once the strength envelope was reached.

9 No hysteresis.
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The theory derived by Dimaggio and Sandler[147 ]  was

originally developed to model soils and was the prototype on which

Green and Swanson based their two-surface models. The model derived

by Dimaggio and Sandler for concrete became the "Weidlinger

Associates" model and was even simpler than that of Green and

Swanson in that

0 surface F1 was absent

a surface F2 was fixed.

Consequently this model could not predict irreversible volume

compaction under hydrostatic compression and could not simulate any

non-linear response in concrete, prior to failure. Indeed concrete

uniaxial response was modeled as elastic-perfectly plastic. In

addition the model suffered from all the faults of the Green and

Swanson theory. Clearly as a theory to model the complex response

of plane concrete the 'Weidlinger Associates' theory was totally

inadequate. However, of all concrete models developed this one has

seen the most intensive application because the authors assert that

uncertainties in structural data obviate the need for more complex

models.

4.3.4 Plastic-Fracturing Models

Dougil[148]  developed a theory of elastic-fracturing

solids. The model had the following attributes:

1) Loss of stiffness due to stable progressive frac-
turing during loading.

2) Linear elastic unload-reload with a tangent stiff-
ness that degrades as internal fracturing progresses
- i.e., process dependent elastic moduli.

3) No residual strains when stresses are removed, i.e.,
complete recovery.

Figure 4-13 shows the cyclic uniaxial response predicted by

the theory.
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Characteristics 1) and 2) are observed in concrete and can be

attributed to progressive microcracking or microfracturing. Char-

acteristic 3) is unrealistic for concrete and Dougill noted in his

closing paragraph that his fracturing theory "in combination with a

hardening or perfectly plastic solid would seem most appropriate."

Bazant and Kim [149] subsequently combined plasticity with

Dougill's elastic-fracturing theory to develop a plastic-fracturing

model of plain concrete response. The plasticity portion of the

model was a non-associated form of the pressure-dependent

Drucker-Prager theory. For monotonic loading Bazant and Kim assumed

a loading function of the form

T + g(o) - H - 0 (4-35)

where

4-2 = sijsij = kk/ 3  . (4-36)

Function H accounted for plastic hardening, though was not

explicitly needed. Eq. 4-35 was used only as a loading surface in

the sense that it was usea to motivate a non-associated flow rule

for plastic strains. The flow rule was

ii P 1 a ) (4-37)
'3 p i, +T 3-0 j

where

p G sij aij + T K ' ikk (4-38)

T (G + K BB' + h)

For an associated flow rule o = -' = ag/ao. However, the authors

independently specified B so that B could account for plastic slip

induced dilatancy while o' was identified as an internal friction
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coefficient. In the definition of AP, G and K were the elastic

shear and bulk moduli, eij was the deviatoric strain increment and

h was a plastic tangent modulus associated with H in Eq. 4-35.

To the plasticity theory the authors added an elastic-frac-

turing theory which accounted for stiffness degradation and strain

softening. Dougil1's work was taken as the point of departure.

Linear elasticity is characterized by s = 2Ge, a = 3Ke, e =

Ckk/3. In the fracturing theory elasticities G and K degraded as

strain accumulated because of internal fracturing. The incremental

variable modulus constitutive equations were obtained by differenti-

ating the linear elastic laws:

2G +2G , =3K + 3Kc (4-39)

In Eq. 4-39 the fracturing stresses were identified as

A = , =-3Kc (4-40)

To obtain constitutive equations for G and K the existence of

a fracturing loading surface was assumed:

-21O(e) =7+ k(c) - H2  , y = eijeij (4-41)

Function H2 characterized the hardening of the surface but

did not need to be explicitly identified. Analogous to the

plasticity portion of the model the fracturing stress increments

were first assumed derived from an associated law:

*f ;f *f A 9 1
g= + + = Ak4Ig .k' (4-42)

27

where k - dk/dc. To improve the theory fit to experimental data,

associativity was relaxed and the constitutive assumption
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2y f ~(4-43)

used. During loading the strain remained on the loading surface Eq.

4-47 and so = . The authors assumed H2 = Ao and thus obtained

(y +1c (4-44)

The plastic-fracturing theory of Bazant and Kim was achieved

by combining the two preceding theories as follows:

.2G(i- - f

(4-45)

S= 3K( - - f

Thus stress was influenced by both plastic slip and elastic

fracturing. Plastic and cracking effects were additive and inter-

acted through elasticities G and K. The theory embodied in Eqs.

4-35 to 4-45 contained six functions, o', o, h, m, k, a', which were

obtained analytically through an extensive curve fitting exercise.

The functions depended on 22 constants most of which depended on

f . Additionally an initial value of Poisson's Ratio had to be

specified.

From Eq. 4-45 it was possible to develop an expression of the

form

ij = Cijkl Cij (4-46)

Thus the theory appeared attractive for finite element appli-

cations except that the non-associated laws implied a non-symmetric

stiffness matrix. Consequences of this asymmetry for incorporation

into a code have not been explored.
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In the same paper the concept of jump-kinematic hardening was

introduced so that the unload-reload loops seen in concrete uniaxial

cyclic compression could be modeled. As the name suggests the

centers of the plasticity and fracturing loading surfaces (a = a ,

= p) were instantly repositioned when the loading direction was

changed. Rules for moving a and t were given and implicit in the

presentation was the assumption that during unloading concrete had

no finite elastic region.

The authors presented extensive evidence of the ability of

their constitutive representation to fit experimental data. This

fit resulted from the judicious choice of the 22 constants and six

complicated functions. The theory appears straightforward to imple-

ment and should be easy to apply since the only free parameter is

!f c" However the theory has not been incorporated into a finite

element code and so it is impossible to assess theory predictive

capability.

4.3.5 Endochronic Models

Bazant was also responsible for the evolution of a series of

endochronic theories of plain concrete response. The principal
distinguishing feature of these theories is that they are incremen-

tally non-linear. The first paper, with Bhat[ 150 J was in 1976.

Strain increments ; had an additive decomposition.

S "e p(4-47)

into elastic and anelastic components. Anelasticity was governed by

the set of equations
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i jP = 'P + ;P ;p ;pP=

• f( )n " g(2P) (4

k2= • ;p1 iT eij , - =L(,,£)

The theory was similar to viscoelasticity in that anelastic
strains accumulated as soon as stress was applied; i.e., no linear

elastic region existed. The variable z was called intrinsic time

and monotonically increased for all deformation histories. The

incremental stress-strain law was

ij = Cijkl Ckl - sijz - 3K; ij (4-49)

where Cijkl was the usual matrix of elasticities which decreased

very slightly with increasing z. The incremental nonlinearity of
the theory is evident in Eq. 4-49 where z and x are functions of 4.

As with the plastic fracturing theory extensive curve fittingwas undertaken to define functions f, g, and L in Eq. 4-48. In all

18 constants and five rather complicated intermediate functions were
finally used. The only free parameter was f'c. Good correlation

was obtained between the theory and a diverse suite of experimental

data for monotonic loading. Principal theory shortcoming was an
inability to adequately predict uniaxial compressive cyclic response

in that unload-reload stress-strain paths did not form closed loops.

In a subsequent paperE 151] the authors demonstrated the

ability of their theory to replicate the moment-curvature and
load-deflection response of reinforced concrete cantilever beams

loaded by alternating cyclic end loads. Sorenson[152,153] -nd

Powell, Villiers and LittonE 154]  incorporated the theory into

finite element codes. All papers reported good correlation between
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their codes and the cyclic response of reinforced concrete beams and

shear panels. Sandler[155 ] believed the theory was unstable in

that small sinusoidal perturbations in strain history would change

stress history significantly. Sandler's objection notwithstanding

no stability problems were encountered by any author using the

theory.

More recently Bazant reformulated the theory with Shieh [1563

and developed entirely new functional forms for f, g, and L. The

new functions were as complicated as before but the following

features were improved.

0 inelastic hydrostatic response

* monotonic strain softening

* cyclic compressive response

* volume changes during strain softening

0 differences in radial and non-radial loading

* triaxial failure envelope shape.

The formulation was incorporated into a finite element code

and applied to a single, ideal plain concrete problem.

The latest endochronic theory is a hysteretic-fracturing-

endochronic model of plain concrete first introduced in[1571 and

fully developed in.[158] The theory combined the endochronic

concepts with the fracturing and jump-kinematic ideas contained

in[149] and discussed in Section 4.3.4. As with Bazant's other

theories, elaborate curve fits were constructed to accommodate

diverse sets of uniaxial, biaxial, triaxial, monotonic and cyclic

data. The predictive capability of this theory remains to be

demonstrated.

4.3.6 Constitutive Theory Conclusions and Recommendations

Many models for plain concrete triaxial response have been

developed. The variable modulus and hypoelastic theories are of no
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practical consequence. The conventional elastic-plastic theories

are straightforward to implement but have only limited predictive

capability because so many observed features of concrete behavior

are not replicated. The plastic-fracturing and endochronic theories

are first attempts at comprehensive plain concrete response repre-

sentations and, compared to preceding models are very mathematical

with many parameters.

For the analysis of the response of protective structures the

most promising theories are those of Bazant since they best simulate

post-peak softening and cyclic response. However, these theories

are the most recent and so least tested. For accurate protective

structure analysis realistic models of plain concrete response are

needed; thus the following recommendations are made:

1. The predictive capabilities of the plastic-
fracturing and endochronic theories should be
further assessed.

2. Plastic-fracturing and endochronic theories
should be modified to include strain-rate
effects.

195

. 4L I



SECTION 5

DEVELOPMENT OF IMPROVED CONSTITUTIVE MODEL OF PLAIN CONCRETE

A plastic-fracturing theory was selected for exploration as a

candidate for an improved constitutive model of plain concrete.

This section documents progress made to-date on the development of

this model.

5.1 GENERAL THEORY

The plastic-fracturing theory consists of two main elements:

(1) a fracturing element and (2) a plastic element. A judicious

combination of these two elements allows simulation of the following

fundamental features of plain concrete: (1) strain hardening, (2)

strain softening, (3) stiffness degradation, and (4) realistic

failure surface geometry.

The fracturing element of this model is due to Dougill (148 )

and is discussed in subsection 5.1.1 (see also subsection 4.3.4).

This portion of the plain concrete model reflects progressive frac-

ture and is the key to the description of progressive stiffness

degradation.

The plastic element of the plain concrete model consists of a

plasticity theory with strain softening. This portion of the model

is intended to simulate inelastic slip which is observed in all test

data.

It is noted that the use of a plastic-fracturing theory for

plain concrete has been explored previously by Bazant and

Kim.(149 )  A discussion of this work is presented in subsection

4.3.4. The theory presented herein differs from that of Bazant and

Kim in that (1) the formulation is more general and (2) the plastic

and fracturing elements are combined in a different manner.

5.1.1 The Progressively-Fracturing Solid

Dougill( 148 ) formulated a theory for a pure fracturing

elastic material using an analogy with conventional plasticity.

This theory, which represents the 'fracturing' part of the plastic-

fracturing theory, is the main source of progressive stiffness
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degradation and strain softening in plain concrete. Namely, Dougill

realized that these phenomena were primarily due to progressive

microcracking of the concrete.

Dougill begins his fracturing model by assuming that the

material is perfectly elastic. Consequently, upon restricting the

discussion to small strain, the stress and strain tensors are

related by

ij = CijkVckk (5-1)

in which C represents the current (secant) stiffness tensor of

the material; this tensor is in general anisotropic with the

exception of the initial (unfractured) state of the material. As

fracture progresses, the stiffness tensor changes according to

Oij = Cijkfeki + Cijkfckf (5-2)

where the superior dot indicates differentiation with respect to a

"bookkeeping' time variable. Dougill associates the first term in

(5-2) with the elastic component of the stress rate tensor and the

last term with progressive fracture:

"e
£ij C ijkfckg ,  (5-3)"f ijk~ kO'

oij E (5-4)

Dougill next associates aij with a 'fracture surface' in

strain space. This surface encloses all combinations of strain that

can be obtained without changing the stiffness of the material

(i.e., without causing further microcracking). The fracture surface

is assumed to be regular and of the form

F(cij ,H) = 0 (5-5)

197

'.1..~~~~ %.:%.\ 1*~* 4



where the parameters H (n = 1,2, ... , N) describe the history of~n
progressive fracture. These terms are selected such that

aF*iF H n < 0 (5-6)

during progressive fracture. Consequently, if

aF i + aF n-,j cj H=0 (5-7)

defines progressive fracture, then the latter occurs only when

aF

F =0 and a ij > 0. (5-8)

On the other hand, progressive fracture ceases and the

material responds elastically without change in the stiffness tensor

if

F < 0 , or F =0 and K eij < 0 . (5-9)

Dougill next notes that, as a consequence of (5-8), it is

possible to write the 'fracture stress decrement' aij in the form

-faF
"i F (5-10a)°ij = gij ~kf k

Since lij is a symmetric tensor, it follows that gij must be a

symmetric tensor. If one now restricts the theory to materials that

obey Il'iushin's postulate, 159 ) i.e., if one requires that the

total work done during the application and removal of a small

increment of deformation must be positive or zero, and if the tensor

gij is not a function of the strain rate ii', then the fracture

stress decrement must be normal to the fracture surface so that
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"f aF aF
i - j aK K > 0 . (5-10b)

The scalar K may be a function of strain and strain history, but not

of the current strain rate.

It is evident at this point that Dougill's model corresponds

to conventional plasticity with an interchange of kinematic for

static variables. The form (5-10b) corresponds to an 'associated

flow rule' within the context of such an interchange. But, as with

plasticity it will be necessary to relax the constraint (5-10b) to

some degree in order to adequately simulate real material behavior.

The scalar K in (5-10b) can conveniently be expressed in terms

of the rate of energy dissipated per unit volume of material, D, and

the parameters Hn.  The energy per unit volume during progressive

fracture (loading) is

D= Gijaijdt T aijCij (5-11a',

which, when differentiated, becomes

"= -(o - a*" ) = 1 31f (5-"fb)
2 ijcij aijcij

Now, using (5-7) and multiplying both sides of (5-10b) by Cij and

using (5-13), one obtains

K - 20 (5-12)aF aF

acij aH Hn

Given the surface F, the rate of change of the stiffness

tensor (stiffness degradation) can be computed by rewriting the flow

rule (5-10b) in the form
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aF aF aF/.f ac ack  r rs

j K k racF / Ck (5-13)

8 aCpq pq

Upon conbiming Eqs. 5-2, 5-3 and 5-13, one obtains the incre-

mental relation

f
ij = Cijkf k (5-14a)

where

K aF aF aF >/f K aers aEkf (rs

Cjk. Cijk~ aF C pq )Ciijk jk -. (5-14b)

'Epq

The form (5-14) is linear in the strain rate and stress rate, i.e.,

it is incrementally linear.

A comparison of Eq. 5-13 with Eq. 5-4 suggests the following

form for the stiffness rate tensor CijkV:

/aF aF

K ( i + Ck (-aFijk - \ , -_pCpq )acrs £rs +RijkC (5-15a)

pq pq

where Rijke is symmetric tensor with the property

Rijkfcki = 0 . (5-15b)

The tensor Rijke is assumed to be zero in most of Dougill's work.

A useful special case of the above formulation occurs where

one assumes F to be a linear function of the strains with a single

parameter h:

F ijcij -h (5-16)
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where xi denote constants. This leads to the elementary result

"f 2 dD
2idj R - X ij "kk (5-17)

and

i= X " (5-18)

The form (5-16) corresponds to isotropic softening and the relations

(5-16) - (5-18) will be examined in some detail in Section 6.

The above formulation can easily be extended to include piece-

wise linear functions F. This subject has been studied by Dougill

and Rida.
(160 )

The above formulation, with an appopriate choice of the dis-

sipation function D, leads to a number of important observed re-

sponse characteristics of plain concrete. These include degradation

of the unload-reload stiffness moduli and strain softening. These

effects are depicted in Figure 4-13 for the case of uniaxial com-

pression.

Dougill has explored the behavior of the fracturing element

using a precise linear representation for the surface F = 0.

Typical softening behavior for a uniaxial tensile specimen is shown

in Figure 5-1 for an elementary dissipation function D(h). (A

similar behavior can be generated in compression.) Typical behavior

for a biaxial case is depicted in Figure 5-2. In this example the

curve shown represents the peak (this peak is referred to as an

'instability' point.) of stress-strain curves, similar to that shown

in Figure 5-1, obtained by radial loading. The similarity of Figure

5-2 to the failure envelop for plain concrete (see Figure 2-30) is

evident although it is too early in the exploration phase of this

model to make much of this point.
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Figure 5-1. Uniaxial tensile behavior.
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5.1.2 The Plastic Solid

The plastic element is based upon well-known plasticity con-

cepts. Accordingly, for the plastic element one postulates a

plastic loading surface (or plastic potential) defined by

D(aij,H' ) =0 . (5-19)

in which Hn(n = 1, 2, ... N') are scalars (hardening parameters).

Upon decomposing the strain rate iij of this element according to:

.e *?p .
Cij W ij + (5-20)

with

i - S ijkakk (5-21)

where Siik( denote constants, and upon associating Pi with the

potential D, one has

C aaq "k kk (5-22)

where A denotes a scalar. Plastic flow takes place when F = 0 and

= 0. The element is elastic when F < 0, or when F = 0 and F < 0.

If one defines the plastic dissipation according to

=1 (5-23)= ij i5

then one evaluates the scalar A as

A= 2D (5-24)

ni
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The potential 0 in the above formulation need not be the yield

surface. If the two coincide, then (5-22) constitutes an associated

flow rate. In general, it will be necessary to relax the constraint

of an associated flow rule in order to properly simulate real

material behavior.

5.1.3 The Plastic-Fracturing Solid

The constitutive relations for the plastic and fracturing

elements can be placed in the incrementally linear form

(1) = p (1) (1) = Sp O(I)
ij ijkQ ki 'ij ijkf kk (5-25)

( f *(2) (2) -"(2)iCi -;ijk k= S (5-26)

where the superscript (1) denotes the elastic element and the super-

script (2) denotes the fracturing element, the tensors C.k,

5 iP.~ Cl S'SP CjkP W ijke are non-constant and depend upon the

current state of stress and strain in each element.

It is emphasized at this point that the stress, strain fields

of the two elements are not connected. Specification of relations

between the "(1)" fields and the "(2)" fields constitutes is a

definition of the manner in which the elements are"mixed'

To-date the plastic and fracturing elements have been mixed

two ways in the literature. In his plastic-fracturing model,

Bazant(149 ) utilizes a "parallel" mixture of these elements in

which

_ 1 (2C) -O s'a. ) + 0 )(5-27)
13 13 1 ' ij 1 1

Accordingly, one has for the combined element

1ij - (C&jkQ + C jk )ck (parallel mixture) . (5-28)
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where it is noted that C? must be evaluated* at stress state
00) ijkj

lj*

In his endochronic-fracturing model, (159 ) Bazant* assumes a
'series' mixture in which

(i) (2) (1) + (52aij = aij ij , cij c )i + cij (5-29)

which leads to the combined element:

ij (Sjk +Sijk)ak{ (series mixture) (5-30)
f jk (2)ak

where Sik must be evaluated at strain state (2)

i jkf ~ij

Other mixture rules may be invoked it appropriate. For

example, the stresses in (5-27) can be combined with 'weights'

n(1) and n(2 ) as follows:

(1) (2) n(1) + (2),(2) (parallel
Cij Cij ')_+1n m ixtuf-1

13 =ij ' 13 1i ij with weighted
stress fields)

Under (5-31), the mixture has the constitutive relation

ij (n( jk CijkQ)k (5-32)

The manner in which plastic and fracturing elements are com-

bined is arbitrary at this point. Investigation of both series and

parallel mixtures is necessary before one can specify an optimum

mixing procedure. Such a study is in progress.

*Bazant(140) does not appear to differentiate between the stress
and strain states in the two elements for the purpose of evaluating
the coefficient tensors.

206

K~4 * % 1 1



5.3 SPECIFICATION OF FAILURE SURFACE FOR PLAIN CONCRETE

The failure surface in stress space represents a very

important part of a constitutive relation for plain concrete. In

those regions of stress space where brittle fracture does not occur,

this surface also marks the beginning of stiffness degradation. The

purpose of this section is to present the results of a study(180 )

designed to construct and validate a failure surface of plain

concrete that mirrors actual material behavior.

In view of its importance, a number of previous attempts have

been made to formulate a failure criterion for plain concrete. Some

of these were aimed at practical design applications; whereas other

more complex expressions have been developed for use in advanced

computer codes. Examples of both types of formulations are given in

References 165, 166, 45, 164, 167, 168, 117, 169, 70, 170, 171, 176,

73. Excellent reviews of previously proposed failure criteria have

been presented by Link, (169)  Ottosen, (170 ) and Wastiels. (172 )

Most of the failure criteria proposed for three-dimensional stress

states involve relatively complex expressions for which more than

three material parameters are required.

The aforementioned criteria were developed to model the

experimentally determined shape of the failure surfaces as observed

in principal stress space. Thus, several studies (165,166,164,168,

70,170,171) have shown that the failure surfaces in the principal

stress spaces are shaped as pointed bullets with cross-sections in

octahedral planes which are triangular, monotonically curved

surfaces with smoothly rounded "corners." Failure surfaces of

similar shapes have also been observed for other frictional

materials such as sand and clay (see, e.g., (161,162,163).

In addition to the characteristic cross-sectional shape in the

octahedral plane observed in several experimental investigations,

the three-dimensional failure surface for concrete has three inde-

pendent characteristics: (1) the opening angle of the failure
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surface, often prescribed by the friction angle, (2) the curvature

of the failure surface in planes containing the hydrostatic axis,
i.e., curved meridians, and (3) the tensile strength. At least

three independent parameters are necessary for description of the
failure surface for concrete. The problem is to obtain simulation

accuracy without the use of more than three independent parameters.

This problem is addressed herein.

5.3.1 Failure Criterion

The proposed failure criterion for plain concrete represents

an extension of a three-dimensional failure criterion previously

developed for soils with curved failure envelopes.(161) This

criterion is expressed in terms of the first and the third stress

invariants of the stress tensor as follows:

(III3 - 27)(IilPa)m = (5-33)

where

I = al+*2+a3 = a11+G22+033 , (5-34)

13 = 0102a3

= 011022033 + 012023031 + 021032013 (5-35)

- (011023032 + 022031013 + 033012021)

The quantities 01,02,03 above denote the principal stresses

and p I is a reference pressure (taken as atmospheric). The value

of I1/13 is 27 at the hydrostatic axis where a, = 12 =

0 . The parameters nI and m in Eq. (5-33) can be determined by

plotting (II3 - 27) versus (Pa/I1  at failure in a

log-log diagram and locating the best fitting straight line. The

intercept of this line with (pa/i1) = 1 is the value of n1 ,
and m is the slope of the line.
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In principal stress space the failure surface defined by Eq.

(5-33) is shaped like an asymmetric bullet with the pointed apex at

the origin of the stress axis as shown in Figure 5-3(a). The apex

angle increases with the value of n1 . The failure surface is

always concave towards the hydrostatic axis, and its curvature

increases with the value of m. For m = 0 the failure surface is

straight. Figure 5-3(b) shows typical cross-sections in the
2

octahedral plane (I I - const.) for m = 0 and n, = 1, 10, 10

and 10 As the value of nj increases, the cross-sectional

shape changes from circular to triangular with smoothly rounded

edges in a fashion that conforms to experimental evidence. The

shape of these cross-sections do not change with the value of 1I
when m = 0. For m > 0 the cross-sectional shape of the failure

surface changes from triangular to that approximating circular with

increasing value of I . Similar changes in cross-sectional shape

are observed from experimental studies on soil and concrete. The

cross-sections in Figure 5-3(b) also correspond to m = 1 and nj

102, 103, 104  and 105. This criterion has been shown to

model the experimentally determined three-dimensional strengths of

sand and normally consolidated clay with good accuracy in the range

of stresses where the failure envelopes are concave towards the

hydrostatic axis.(161,162,163)

Since concrete is a frictional material with many characteris-
tics similar to those of soils, it may be expected that its strength

can be expressed by a criterion similar to that in Eq. 5-33. In

order to include the cohesion and the tension which can be sustained

by concrete, a translation of the principal stress space along the

hydrostatic axis is performed as illustrated in Figure 5-4. Thus, a

constant stress a.p1  is added to the normal stresses before

substitution in Eq. 5-33:

+ i a.pa (5-36a)

= 02 + a.pa (5-36b)
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Figure 5-4. Translation of principal stress space along hydro-
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static axis to include effect of tensile strength
in failure criterion.
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a + a.pa (5-36c)

where a is a dimensionless parameter. The value of a.p a reflects

the effect of the tensile strength of the concrete. Although the

three material parameters describe separate characteristics of the

failure surface, they do interact -in calculation of, e.g., the

unconfined compressive strength of the concrete. Thus, an infinite

number of combinations of n, m, and "a" could result in the same

value of the unconfined compressive strength.

5.3.2 Determination of Material Parameters

In order to determine the values of the three material

parameters for a given set of experimental data, the value of "a" is
estimated and a.Pa is added to the normal stresses before

substitution in Eq. 5-33. The procedure for finding nI and m as
described above is then followed. To facilitate the estimate of

"a", advantage may be taken of the fact that a.p a must be slightly

greater than the uniaxial tensile strength of the concrete as

indicated on Figure 5-4. If tensile tests are not part of a regular

testing program, a sufficiently accurate value of the uniaxial

tensile strength may be obtained from the approximate formula

prescribed below.

Uniaxial tensile strength - According to data presented in the

literature(1 64 ) the uniaxial tensile strength a t varies between

5 percent and 13 percent of the unconfined compressive strength

ac .  The values of at and ac may be related through a power

law of the type:

at -p a (5-37)

where T and t are dimensionless parameters. The value of T = -0.61

and t = 2/3 is appropriate for concrete.
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Regression Analyses - Since the failure criterion is expressed

in terms of stress invariants, any type of test in which all

stresses are measured may be used for determination of the three

material parameters. However, it is advantageous to require only

the simplest possible types of tests such as, e.g., unconfined

compression and triaxial compression or biaxial tests for this

determination, and then check whether these simple tests are

sufficient for adequate characterization of the failure condition

for the particular concrete under investigation. This may be done

using various sets of data available in the literature which include

both simple and more complex three-dimensional tests.

In order to obtain the overall best fitting parameters,

*regression analyses may be performed to determine the highest

possible value of the coefficient of determination r. Figure 5-5

shows an example of the effect of varying the parameter "a" on the

values of r2, 1l, and m for the tests on Mix A concrete

performed by Mills and Zimmerman. (70 )  Only the results of the

unconfined compression and the triaxial compression tests in

addition to the estimated value of the uniaxial tensile strength

(from Eq. 5-37) were used to determine the three material

parameters. The uniaxial tensile strength was estimated to be -23.1

kg/cm 2 (-2266 kn/m 2 ) for Mix A concrete and the best fit value

of "a" = 23.2 resulted in nI = 119,339 and m = 1.127.

Except for the three points corresponding to the uniaxial

tensile strength of Figure 5-5, the points corresponding to the

other tests do not move enough on the diagram to show their

movements. The points corresponding to the uniaxial tensile

strength tend to influence the location of the fit straight line.

However, each of the three lines would describe the failure surface

in the region of compressive stresses with reasonable accuracy.

Thus, it is an advantage to incorporate the uniaxial tensile

strength, even though it may be an estimate, in determination of the

material parameters in order to stabilize the failure criterion in

the region close to the origin and to describe the tensile strength

for the concrete with reasonable accuracy.
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Figure 5-5. Determination of material Parameters involved in
failure criterion for Mix A concrete tested by
Mills and Zimmerman.
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The results of the cubical triaxial tests on Mix A concrete

are shown on Figure 5-5 for comparison. It may be seen that some

scatter of the data around the solid line does exist, but the

material parameters selected on the basis of the simple tests appear

to represent the data quite well.

5.3.3 Material Parameter Values

Twenty-one sets of data, considered to be of good quality,

were employed in a study of the applicability of the proposed

failure criterion to plain concrete and mortar. The material

parameters obtained in this study are given in Table 5-1 together

with the types of tests used for their determination. Where tests

of simple and more complex types were present in the investigations,

only the simple tests were employed for determination of the

material parameters. Thus, the results of unconfined compression

tests were always employed. The uniaxial tensile strength was also

most often employed in the parameter determination, whether measured

or estimated from Eq. 5-37. As indicated on Figure 5-5, the value

of the uniaxial tensile strength has a substantial influence on the

best fitting material parameters. It was often found that the

estimated value from Eq. 5-37 would result in better overall fit

than the value determined from experiments, although the two values

were not substantially different. This is because the value of

(I/I3 - 27) is very sensitive to small changes in stress

near the origin, but this sensitivity is not reflected severely in

the actual fit between the experimental data and the mathematical

model for the failure surface.

Table 5-1 indicates that the results of triaxial compression

tests or biaxial tests (compression-compression, and sometimes

compression-tension) were also employed in most cases for

determination of material parameters. Data from these tests were

, ) included to provide better overall fit between data and failure
: criterion. However, the material parameters for the torsion shear

tests performed by Bresler and Pister( 4 6 ) were determined from the

unconfined compressive strengths and the estimated values of the
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Table 5-1

Strength parameters for concrete and mortar

Typo of Data From "Type of (a /p ) Mat. Paran. arS r (I3/13-27)
.Material Ref. No. Tests c a ased on 1 max at 11 /Pa-10

00

UC. UT, uc, 3 UT

10. 23 c-c 2300 C-C 27.3 278,267 1.217 0.997 62.3

4 UC, TS 206.9 UC,3UT 19.8 97,560 1.122 1.0 42.0

4 UC, TS 300.4 UC,3UT 25.6 157,752 1.105 1.0 76.3

4 UC, TS 386.5 UC, 3UT 31.0 25.,398 1.124 1.0 108.5

UC, ur, 0C. UT
10 C-C,C-T,T-T 190 C-C. C-T 20.1 147,040 1.220 0.944 32.2

UC. UT uc, ur
10 C-C,C-T,T-T 315 C-C, C-T 28.5 159,795 1.133 0.918 73.1

UC, UT UC, UT
10 C-CC-T,T-T 590 C-C, C-T 50.9 12,313 0.686 0.371 107.7

UC, TC UC, 3UT
Plain 16 C-C, CT 234.8 TC 23.2 119,339 1.127 0.964 54.9

Concrete
UC, TC UC. 3UT

16 C-C, CT 274.6 TC 25.8 55,173 0.956 0.923 74.9

UC, TC UC, 3UT
16 c-c, CT 368.1 TC 31.3 265,067 1.132 0.902 106.0

) UC, 3UT

15 0C, C-C 2300 C-C 27.3 158,222 1.143 0.897 59.0

54 UC, TC UC,3UT

5 (CU) C-C, CT 301.6 TC 27.4 681,650 1.412 0.985 39.6

UC, TC UC, 3UT
5 (NMSU) C-C, CT 307 TC 27.8 746,100 1.396 0.979 48.4

UC, TC UC,3UT
5 (ENEL) C-C, CT 273 TC 25.8 39,750 0.931 0.990 64.0

UC, TC
5 (TUM) C-C, CT 325 UC, TC 28.0 162,347 1.105 0.996 78.0

4 C, TC UC, 3r
5,18 (RAM) C-C, CT 312.1 TC 28.1 367,195 1.263 0.999 59.8

UC, UT UC, 3Lr
19 C-C,C-T.T-T 339.3 C-C. C-T 29.7 17,368 0.790 0.896 74.0

54 2 C, 3 UT
5 (CU) UC. C-C 300 C-C 27.3 300,106 1.241 0.987 56.8

4 2 UC 3UT
Mortar 54 (T.) UC, C-C 2300 C-C 27.6 8,671 0.695 0.990 71.0

4 CC, hU!
5,18 (BAM) UC, C-C 310 C-C 28.0 54,436 0.969 0.992 67.4

tiC, 3 vr
1 UC, C-C 413.1 C-C 33.8 314,784 1.172 0.884 96.2
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uniaxial tensile strengths. These latter values were estimated from

the torsion shear tests involving pure shear. These stress

conditions are those closest to the uniaxial tensile stress

conditions in this series of tests. However, the uniaxial tensile

strengths might also have been estimated with good accuracy from Eq.

5-37 on the basis of the unconfined compressive strengths. Thus, it

is clear that the result of one simple test is sufficient for

estimation of material parameters. However, inclusion of additional

test results is generally advisable in order that the particular

characteristics of the concrete under investigation be captured in

the modeling of the failure criterion.

The values of "a" listed in Table 5-1 are determined by the

regression analyses to within 0.1. These values of 'a' (> 0) are

0.3 percent to 1.4 percent higher than Iat/Pa1, and they vary

between 19.8 and 33.8 with a single value as high as 50.9 for the

concrete and mortar included in this study, i.e.:

a = (ft/Pal .(1.003 to 1.014) (5-38)

with the higher values of the coefficients to Iot/Pa I associated

with the lower values of niand m.

Typical values of m for concrete and mortar vary between 0.9

and 1.2 with extreme values of 0.69 and 1.41. In comparison, values

of m determined for cohesionless soil( 162) typically vary between

0.0 and 0.84. Thus, the curvatures of the failure envelopes for

concrete and mortar are substantially more pronounced than those for

cohesionless soil.

The values of nI listed in Table 5-1 vary over a large

range. This is because these values are determined at PalI1 =

1, which is a value that is very close to the origin of the

translated coordinate system as compared to the corresponding values

of Pa/11 for most tests on concrete. Figure 5-5 indicates that

even small variations in m result in large variations in %,

because log-log scales are used in this diagram. However, the
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values of m and n, combine in Eq. 5-33 to produce values of

(I /13 - 27) of comparable magnitudes at higher values of

I where most tests are performed. The values of (III3 -

27) at IllPa = 1000 are listed in Table 5-1. These values are

all in the range from 40 to 108. Thus, the actual range of

strengths is not as large as may immediately appear from the range

of n1 .  Values of nI  for cohesionless soils( 162) typically

vary from 20 to 280, and even smaller values may be obtained for

normally consolidated clays, whose effective stress friction angles

may be much smaller than those for sand. Thus, the opening angles

for concrete and mortar are much larger than those obtained for

soils.

5.3.4 Evaluation of Failure Criterion

In order to validate the proposed failure criterion, compari-

sons have been made between experimental data and failure surfaces

calculated from Eq.s 5-33 and 5-36. All data were plotted on the

biaxial plane, and data points were projected on the octahedral

plane for all data sets except those produced by Bresler and

Pister.(45 )  Those data sets containing results of triaxial com-

pression and extension tests were also shown on the triaxial plane.

The results of torsion shear tests (by Bresler and Pister ( 4 5 ) were

plotted on the -r-c diagram and on the biaxial plane. The values of

'a', n1 , and m given in Table 5-1 were used for determination of

the theoretical failure surfaces. Examples of these comparisons are

given below.

Biaxial Plane - The lowest value of the coefficient of

determination, rmax, for all data sets was found for the tests

performed on concrete with ac = 590 kg/cm2  (57,880 kN/m2 ) by

Kupfer et al. (36)  The comparison of test data (points) and

failure surface (solid line) is shown on the normalized biaxial

plane in Figure 5-6(a). All data, except those corresponding to

tension-tension, were used to determine the material parameters.

This set of data resulted in the lowest value of m and the highest

value of 'a' encountered in this study. Despite the low value of

rmax, the failure criterion is seen to represent the test data
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with- reasonable accuracy. The data in the compression-tension area
exhibit sufficient scatter to cause the low value of ra-- m a x '
This is because one of the stresses in the translated coordinate

system (02) is very small, thus causing the value of 13 to be
small, resulting in a large value of (II1 - 27). Any small

deviation of the data points in this sensitive region from the best

fitting failure surface greatly affects the value of r 2rma x *

However, the actual fit between data and failure surface in this
region is not greatly affected. In order to study the failure

surface relative to the data in the tension-tension area, the data

are shown on the enlarged diagram in Figure 5-6(b). It may be seen

that the failure surface is smoothly rounded at the corner and that

it corresponds exceptionally well to the data in this region.

A major investigation was performed by Mills and Zimmer-

man. (70 )  The results of their tests on Mix A concrete, which

contained tests in biaxial, triaxial, and octahedral planes, pro-

vided a good, coherent set of data for this study. The material

parameters for this concrete were determined on the basis of uncon-
fined compression, triaxial compression, and an estimated value of
the uniaxial tensile strength. The data obtained in the compres-
sion-compression region of the biaxial plane are shown in Figure

5-7(a). Although there is some scatter in the test results, the

proposed failure criterion is seen to represent the data quite

well. Note that the "pointed corner" in the tension-tension area is

actually smoothly rounded as shown in Figure 5-6(a).
The data obtained by Tasuji et al.(121 ) are compared with

the failure surface in the biaxial plane in Figure 5-7(b). Tests in

compression-compression, compression-tension, and tension-tension

were performed in this study. Again, the overall representation of

the data by the proposed failure criterion is reasonably good.

Triaxial Plane - Examples of comparisons between test data and

the proposed falure criterion are shown in triaxial planes in Figure

5-8. Note that in both diagrams in this figure, the material

parameters were determined on the basis of the unconfined
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0 - EXPERIMENTAL RESULTS
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E
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Figure 5-8. Comparison of proposed failure criterion in triaxial
planes with results of triaxial compression, and ex-
tension tests performed by (a) Mills and Zimmerman on
Mix A concrete, and by (bl Bertacchi and Rossi.

(1kg/cm 2= 98.lkN/m 2.
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compression, the triaxial compression, and on estimated value of the

uniaxial tensile strength. Thus, tne good agreement between the

results of the triaxial compression tests and the proposed failure

criterion could be expected. However, the strengths obtained in

triaxial extension are also well represented by the failure

criterion.

Figure 5-8 also shows that the failure surface in extension

cuts across the 01 = 0 plane at a very shallow angle. Therefore,

any small deviation between test data and failure surface at this

intersection in the triaxial plane will appear as a large deviation

in the biaxial plane. Comparison of the data points for Mix A

concrete indicated by arrows in Figures 5-7(a) and 5-8(a) shows that

these appear to deviate somewhat from the failure surface in the

biaxial plane (Figure 5-7(a)), whereas the same points in the

triaxial plane are very close to the proposed failure surface. Any

little amount of restraint in the testing apparatus would result in

too large strength in biaxial extension, and this would show up very

clearly in the biaxial plane. However, an evaluation in the

triaxial plane would likely show that the test data are not that far

from the actual failure surface. The natural scatter in test data

could easily account for durations of the magnitude indicated in

Figure 5-7(a)).

Octahedral Plane - The data from cubical triaxial tests on Mix

A concrete obtained by Mills and Zimmerman (70 ) are projected on

the octahedral plane corresponding to 1 = 150 kg/cm 2  (14,715
2kn/m ) in Figure 5-9(a). Values of the minor principal stress,

a , of 0, 29.5 kg/cm 2  (2894 kn/m 2 ), 59.1 kg/cm2  (5798

kn/m2 ), and 88.6 kg/cm 2  (8692 kn/m2 ) were used in these
tests. The points in Figure 5-9(a) corresponding to these values of

03 are shown separately on the octahedral plane for comparison

with the proposed failure surface. The projected data points were

transferred to the common octahedral plane along the curved

meridians using a technique involving the diagram in Figure 5-5.
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Note again that only data from unconfined compression, triaxial

compression, and uniaxial tension were used for determination of

material parameters. The data from these tests are at the top of

the diagrams in Figure 5-9(a). Only one sixth of the octahedral

plane is shown in Figures 5-9(a) and 5-9(b), and all data points

shown in these two diagrams correspond to compressive (or zero)

stresses isn the cubical traixial tests. The data shown in Figure

5-9(c) are those produced in the biaxial plane and previously shown

on Figure 5-7(b). These data are therefore projected along the
respective curved meridians up on the octahedral plane corresponding

to 1 = 150 kg/cm 2  (14,715 kn/m 2 ). Any small amount of

scatter in the biaxial plane, especially in the region of

compression-tension and tension-tension would be magnified by

projection on the octahedral plane. Especially one point on Figure

5-9(c) appears to have moved inside the failure surface in the

region of compression-tension. This is the point in Figure 5-7(b)

corresponding to olIcc = 0.5. The point in Figure 5-7(b) does

not appear to be substantially removed from the failure surface, but

the magnification of the dislocation of this point relative to the

failure surface is evident in Figure 5-9(c). The points corre-

sponding to tension-tension in Figure 5-7(b) are only slightly

outside the failure surface. However, these points cannot even be

projected on the octahedral plane in Figure 5-9(c), because in the

translated stress space they are located in a region of the space

which corresponds to one of the principal stresses being negative.

Note that the experimental points on the octahedral planes in

all cases describe failure surfaces which are triangular with

monotonically curved surfaces and smoothly rounded edges, as does

the proposed failure criterion. The overall fit between the data

points and the failure surfaces in Figure 5-9 is considered to be

accurate and within the natural scatter of data.

- a Plane - The data obtained from torsion shear tests on

large hollow cylindrical specimens by Bresler and Pister (4 5) are

shown on normalized diagrams in Figure 5-10. The T - a diagrams in
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Figure 5-10(a) corresponds directly to the applied stresses in these

tests, whereas the same test data have been transferred to the bi-

,' axial planes in Figure 5-10(b). The results of the tests are

located in the compression-tension region of the biaxial plane. The

scatter in these data is a little larger than experienced in some of

the other investigations reviewed for this study. Only the (aver-

age) unconfined compressive strengths and the estimated uniaxial
tensile strengths were used for determination of the material para-

meters for the three batches of concrete used in this study. How-

ever, the variation in strength is reasonably well captured by the

proposed failure criterion.

5.3.5 Conclusions

In this section a general, three-dimensional failure criterion
for plain concrete and mortar was formulated in terms of the first

and the third stress invariants of the stress tensor, and it
involves only three independent material parameters. Although

these parameters interact with one another, each parameter

corresponds to each of three failure characteristics of concrete

behavior. These material parameters may be determined from simple
tests such as unconfined compression and triaxial compression or
biaxial tests. For the purpose of including reasonable values of

tensile strengths in the failure entering it is advisable to include

the uniaxial tensile strength in the parameter determination. A

simple expression for evaluation of the uniaxial tensile strength on
the basis of the unconfined compressive strength is given. Twenty-

one sets of good quality data for concrete and mortar have been

included in this study, and comparisons between the proposed failure

criterion and the experimental data are made in biaxial, triaxial,

octahedral, and t - a planes. The ability of this criterion to

capture the characteristic of failure in concrete and mortar appears

to be excellent with accuracies generally within the natural scatter

of the test data.

Finally, the above effort represents an important first step
in the direction of constructing an accurate constitutive

description of plain concrete.

I27I



SECTION 6

DEVELOPMENT OF IMPROVED CONSTITUTIVE MODEL OF

REINFORCED CONCRETE

6.1 APPROACH AND SCOPE

The problem of describing the interaction between reinforcing

steel and plain concrete constitutes the most important problem

associated with constructing an accurate model of reinforced con-

crete. In most cases, it is this interaction that dominates the

global behavior of reinforced concrete.

In this section we present the results of a study to explore

the use of mixture theory concepts to mathematically describe the

interaction of steel and concrete and the global behavior of rein-

forced concrete, when viewed as a composite material, in the highly

nonlinear range of deformations. The particular mixture theory

under study falls into the "mixture-theory-with-microstructure

category," (174,175) which has been successfully utilized to model

other classes of composite materials.

According to the mixture-theory-with-microstructure approach,

the constituents of reinforced concrete, i.e., steel and concrete,

are modeled at each instant of time as superposed continua in space

in a manner similar to a finite element overlay. In contrast to a

standard overlay, however, each continuum is allowed to undergo

individual deformations. The microstructure of the composite

material is then simulated by specifying the interactions between

the continua.

Within the context of mixture theories, previous 'smearing' of

steel and concrete using a volume weighted mixture rule to determine

stiffness and strength may be viewed as a mixture theory in which

each component (steel, concrete) is constrained to have the same

deformation gradient at the same spatial point. Relaxation of this

constraint through an improved mixture framework obtained by micro-

mechanical considerations regarding the interactions of the com-

ponents leads to a marked improvement in the simulation capability

of real material behavior.
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As was noted in Section 1, two mixture models are currently

under study. In one, called the Two-Phase Model, steel and concrete

remain distinct materials. In the other, called The Single-Phase

Model, steel and concrete are completely "homogenized" into a new

continuum. Here the identity of the individual constituents is lost.

The advantage of the Two-Phase Model is accuracy and simula-

tion cap , lity. That of the Single-Phase Model is enalytical

simplicity. In both models, however, the global properties of rein-

forced concrete are synthesized from the properties of the steel and

concrete, the steel-concrete interface physics, and the steel

geometry. The concepts of Single- and Two-Phase Models are depicted

in Figure 6-1.

- The key to the development of mixture models for reinforced

concrete is an asymptotic procedure called "multivariable asymptotic

expansions." This mathematical technique may, if properly executed,

be applied to both "dense" and "sparse" steel layouts. In what

follows the procedure is outlined for a uniaxial dense steel mesh

which may be locally approximated as initially periodic. "Dense"

here may be anything from 1/2 to 5 percent or more steel. Locally

such a mesh typically appears as hexagonal, Figure 6-2, or rectangu-

lar, Figure 6-3. The procedure may, it is emphasized, also be

applied to locally non-periodic geometries such as the beam cross-

section depicted in Figure 6-4. Whether periodic or non-periodic,

the development can always be reduced to the analysis of one or

several typical "cells," Figures 6-2 to 6-4.

In Section 1, it was noted that the problem of mathematically
describing reinforced concrete can be divided into several sub-

problems. These include (1) the steel-concrete bond problem, (2) the

steel-concrete dowel problem, (3) the aggregate interlock problem,

and (4) the steel buckling-concrete spallation problem. Only the

steel-concrete bond problem will be treated herein. This problem

type includes a wide range of practical applications concerning the

nonlinear bending and stretching of reinforced concrete beams,

plates and shells.
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CONCRETE STEEL INTERFACES

ANALYTICAL MIXING PROCEDURE

TWO-PHASE MODEL

(STEEL, CONCRETE DISTINCT)

NON-PHENOMENOLOGI CAL PHENOMENOLOGICAL
MODEL MODEL

(HOMOGENIZED MATERIAL) (HOMOGENIZED MATERIAL)

Figure 6-1. Single- and Two-Phase Model concepts.
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i

Typical Cell

Figure 6-2. Dense mesh, hexagonal layout.

Typical cell

*.: .21. *: Figue 63. Dnsemesh, rectangular Tayout.Fiur *.3 Dense:

Cell
#3 .

CeCell
#1 #

Figure 6-4. Sparse mesh, non-periodic (Beam
cross-section).
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6.2 DEVELOPMENT OF TWO-PHASE MIXTURE RELATIONS

The purpose of this subsection is to review the development of

the basic mathematical mixture description of reinforced concrete.

Since the discussion will focus upon the steel-concrete bond

problem, the steel layout may be selected as uniaxial with a local

periodic array. For simplicity the discussion is restricted to

static problems.

6.2.1 Equilibrium Relations - With reference to a typical cell,

Figure 6-5, and a spatial or Eulerian description, the condition of

equilibrium is

a0i)Iaxj =0 on ; = 1,2 , i = i to 3 (6-1)

where ci denotes the Cauchy stress tensor, superscript c = 1,2

denotes material a (a = 1 represents steel, a = 2 concrete), which

occupies volume V0 ). Latin and Greek subscripts, with ranges 1 -

3 and 2 - 3 respectively, denote Cartesian tensors and the usual

indicial (summation) notation.

6.2.2 Constitutive Relations - A wide range of elastic-plastic

and/or elastic-plastic-brittle fracture material models may be

expressed in the form

= dij k ) (6-2a)

where A denotes the Jaumann stress rate; Cijk( is the tangent

stiffness tensor, and 2dkf = (avk/axt + av(laxk) is the rate

of deformation tensor, where vi is the velocity vector. Under the

constraint of small deformations, which should suffice for most

reinforced concrete problems, Eq. 6-2a may be approximated by

i = ;a) (6-2b)
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where (.) denotes the usual time derivative (bookkeeping time for

quasi-static problems), and 2ekf = (auk/ax f  + au(/axk) where

ekC is the Cauchy strain tensor and ui the displacement vector.

The tensor CijkV in Eq. 6-2 is assumed to be independent of the

stress and strain rates but may depend on the current stress and/or

strain states; isotropy of C ijkf may not be assumed in general due

to plastic flow and/or prior cracking of the concrete.

6.2.3 Interface Relations - Relations between tractions and dis-

placements for each material across the interface .9(1, Figure 6-5,

must be specified to represent the interaction between steel and

concrete. Where slip occurs, an interface stress versus relative

slip condition must be defined. For the present discussion, con-

tinuity of the normal anu tangential displacement components in the

x2, x3 plane will be assumed; displacements in the x, direc-

tion direction may be discontinuous across .9i. These conditions

can be written as:

UMv = U(2) v , u (1)S = u(2)s , (6-3a,b)Y Y Y Y Y Y Y Y

()V V = C(2) , (1)v S = a(2) V (6-3c,d)
y6 y 6 y6 Y y8 y 6 y6 y 6

where y, s = 2,3 and where v is the unit outer normal vector to

the surface .1 and sY is the unit tangent vector to .91. The

relations (6-3a to d) represent, respectively, the continuity of:

(1) the displacement component normal to YI, (2) the displacement

component tangent to .91 (in the X2, x3 plane), (3) the normal

stress on 4, and (4) the shear stress on 1 in the tangential

direction. In addition to Eqs. 6-3, a slip condition shall be

assumed in the incremental form

() -(2)v = C. *(2) ()a-mv u(6-3e)

where C is a tangent modulus which depends on the normal stress on

.9r and the relative deformation history.
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6.2.4 Microcoordinates - It is to be expected that stress and defor-

mation fields will vary significantly with respect to two basic

length scales: (1) a "global length" typical of the loading con-

dition, body size, or crack pattern, and (2) a "micro length"

typical of the cell planar dimensions. Further, these scales will

differ by at least one order of magnitude in most cases. This

suggests the use of multivariable asymptotic expansions which

commences by introducing the "microcoordinates" x*2, x*3

according to

(x*, x*) - (x2, x3) (6-4)

where c << 1 is a parameter that represents the ratio of typical

micro-to-macro dimensions of the problem. All functions f(xi) are

next written in the form

f(xi) = F(xl;x*;c) ; i = 1 - 3, y = 2,3 . (6-5a)

Spatial derivatives of a function f(xi) then take the form

af aF af aF + aF
ax ' a ax ; = 2,3 (6

Y Y Y

For notational convenience in the following development, the func-

tions f and F will both be written simply as f.

6.2.5 Basic Relations: Asymptotic Form - The operations, Eq. 6-5,

when applied to all fixed variables, furnish the basic relations,

Eqns. 6-1 and 6-2b in the new form

(a) (C)(Oij + i,j: 0
, 0 ;(6-6)

ax. axl ax*

*(a) (t) + 1 () (6-7a)
°ij ijkV k + k )
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where

x

e=) = u /ax{ + au () / ax k), e = (au(g ) / ax* + au(7 ) / axf),

au iax* = 0 ;(6-7b)

6.2.6 Periodicity Condition - For a dense mesh (typically one to

five percent steel), local periodicity in the planar variables

x*,x* may be assumed(175) with respect to all field vari-

ables. This condition, which allows one to analyze a single typical

cell as illustrated in Figures 6-2,3 takes the form:

f(xi;r*;e;e) = f(xi;r*;e + w;e) on .92  (6-8)

where r* = r/r (2) and f represents any of the field variables.

In the event that the steel does not constitute a dense mesh,

such as illustrated in Figure 6-4, one must consider several cells

with boundary conditions on .1 that differ from Eq. 6-8. However,

only a limited number of cell geometries and boundary conditions

need be considered for steel layouts of practical interest.

6.2.7 Smoothing Operation - According to Eq. 6-4, variations of the

field variables over global and local (micro) dimensions are repre-

sented by the explicit dependence on xi and x*i, respectively.

That is, all field variables vary "slowly" with respect to xi and

rapidly with respect to x*i. In the process of synthesizing a

continuum model of a composite such as reinforced concrete one would

like to "smooth out" the rapid or micro variations. In view of the

explicit dependence on x*i , this smoothing process can be easily

accomplished by performing averages over the microvariables

x*2,X* as follows:
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f(1a)(xi) J f i) x*,x*)dx2Ux (6-9)

The averaged or "global" variables f(aa), where the superscript

"a" denotes an average over the microstructure, are functions only

of the global coordinates xi. The functions f(a) in Eq. 6-9

refer to any of the field variables.

6.2.8 Two-Phase Mixture Equations: Equilibrium and Constitutive -

Upon averaging the equilibrium equations 6-6 according to Eq. 6-9,

use of Gauss' Theorem, and application of the periodicity condition

Eq. 6-8, one obtains

+ (-1)+P i = 0 , (6-10)axj

where

=,O) na a ~a) ,n(a) = A~L/A (6-11)

represent partial stresses (denoted by the superscript "p") and

volume fractions, respectively, and where

P. I 7a .Y v Y ds (i = 1-3, y = 2,3) (6-12)

represent "stress interaction" terms which result from the transfer

of normal and shear stresses across the surface . with unit outer

normal v, Figure 6-5.

Upon averaging Eq. 6-6, use of Gauss' Theorem, and application

of the periodicity condition Eq. 6-8, one obtains

= P n() ca ij ; (aa) + (-I)) 1+~C*taa) i*(613
(ij ijka ' ijkC S (6-13)
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where

S1 (S( + S..)12 S u a v, ds , (6-14)

and where C(a) and C*ika) are defined by*ijkf ijkfi

ik (a) e*(A)dxa ) e*(a)dx*dx3
Ci 2 3 ijk{ ki 2

AjK ) )W

(6-15)

r aaWe(a) 1 J) ) dx~dx*ijkV kQ - A ) ) ijkf ki 2 .

The form of Eq. 6-13 is based upon continuity of the component of
(1)the displacement vector in the x2,x3 plane across J1 (uVl)

( 2) on X, y = 2,3) but allows longitudinal slip (u1)

(2 ) 11
u 1 on ,). The functions S*ij in Eq. 6-13 represent "dis-

placement interaction" terms across the boundary _,. Note that,

since v1 0, then Si1  0 (i = 1-3).

Equations 6-10 and 6-13 are the two-phase mixture forms of the

equilibrium and constitutive relations. These forms can be in-

terpreted as an overlay of two continua (steel and concrete) which

interact via Pi and Sij. The interaction in Eq. 6-10 appears as

an effective body force while that in Eq. 6-13 as a modification of

the strain tensor which resembles a thermal effect.

6.2.9 Interaction Terms and Closure - The mixture theory defined by

Eqs. 6-10 and 6-13 is closed by providing relations between the

interaction terms Pi Sij and the dependent field (global) vari-

ables u a). In addition, the functional dependence of the

tangent moduli Cijkk, C*ijkQ on the partial stresses must be

specified. To accomplish this task it is necessary to determine the

*Note that the averages for Cijkg are weighted here and are not
defined by (6-9).
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functional dependence of the field variables on the microcoordinates

x*2 x*3 .  This dependence is also of direct interest. In par-

ticular, a main feature of the two-phase mixture theory under dev-

elopment is the simulation of stress and deformation fields through-

out the components of the composite, i.e., in the steel and con-

crete, as well as average or global stresses and deformation.

For the purpose of constructing estimates of the "micro-

fields," an asymptotic procedure is used. This commences by ex-

panding the displacements and stresses in each material in a regular

asymptotic series (175) as follows:

CO

)) .(x x
n=O i(n) i

00 (6-16)

ij (k;x;;) -= n ) -x*)
n=O ij(

The expansions (6-16) are suggested by the form of (6-6) and (6-7a),

and the premise that << 1.

Upon substituting Eq. 6-16 into Eqs. 6-6, 6-7a and equating

coefficients of each s-order, one obtains

3- ( ) )/axt = 0
ij(o) i

iy () )/axt = - aij) ) (n > 1) (6-17)

3 a /ax* =Oij(n) 1j

ijke(o) k(o) - 0

-l + c(ar) "(C)-ij(n) ijk (o) kf(n) k (n+1)] + ijk4 (1)[ek(n-1)+ n
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+ Cijk( 2 ) [ek(n-2) +keCn 1)] + Cijkf(3)[ k(n-3) k((n-2)

+ + C( ) (6-18)"" ijk (n+1) kC(O) '(-8

ae(; )  /-x*=0
ij(n)/ = 0,

wherea 0 for n < 0ij(n)' eij(n)

Substitution of Eq. 6-16 into the periodicity condition (6-8)

furnishes:

U() () E x* - periodic on 1 (6-19)
i(n ij(n)

Now, the interface continuity conditions (6-3a to d) give

u() (2) u() s =u(2) (6-20a)-fn)""y =y(n),4y, y(n)S =y(n)S-Y  ,

a(i) V = a(2) V 9 a(1) a(2) VS (6-20b)
y(n) = y(n) y a'y6(n)vys =  y6 y (

while the slip condition, Eq. 6-3e, furnishes

-(1) *(2) -c "
ly(n)Vy = aly(n)vy = (n)Au(o) + C(n-l)au(l) (n-2)Au(2 )

(6-20c)

+ ... +C(o)Au() , n = 0,1,2 ...

where C -AU 0 for n < 0(n) - (n)

In addition to Eq. 6-20, one must specify a normalization

condition (175 ) of the form

U ) (xi;O) =0 , n> 1 (6-21)(n
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Equations 6-17 through 6-21 define a set of so-called micro

boundary value problems (MBVPs) on the typical cell. For mixture

construction purposes only the first few terms of the expressions

(6-16) need be retained and thus the resulting set of problems is

relatively small. In general, however, they constitute a diffi-

cult analytical problem and a comprehensive treatment of this sub-

ject is beyond the scope of this report. For discussion purposes it

will suffice to note that the solutions to the MBVPs can usually be

cast in the form

ui(nk)xj;x*) ua)(xj) f (x*) (i,jk = 1-3 (6-22)

y = 2,3)

Substitution of Eq. 6-22, and a similar form for the stresses
J00 into Eqs. 6-12 and 6-14 then provides closure of the
.ij(n)
mi'xture model in the form

P. = G i(ca (ciH (ia (ap) (6-23)
1 k 'k i . j H k k

where the expressions (6-23) are linear in the rates.

6.3 VALIDATION OF TWO-PHASE MIXTURE RELATIONS FOR STEEL-CONCRETE
BOND PROBLEM

At this point the mixture problem will be confined to a con-

sideration of the steel-concrete bond problem. And for this purpose

it will suffice to consider the uniaxial tension-compression case.

In particular, in what follows, an attempt is made to simulate mate-

rial response from displacement-controlled tension-compression tests

of reinforced concrete. Of interest is (1) typical behavior as pre-

dicted by the model (simulation capability) and (2) simulation

accuracy.

The uniaxial tension-compression test is an excellent vehicle

to demonstrate both the simulation capability and the simulation

accuracy of the mixture model. In this respect it should be
recalled that the behavior of reinforced concrete under direct
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tension is extremely complex. In monotonic extension one observes

strain softening and subsequent strain hardening. In cyclic loading

one observes stiffness degradation and considerable hysteresis which

is the basis for (composite) material damping. These effects are

the result of progressive cracking of the concrete, degradation of

the steel-concrete bond and subsequent relative slip, and yielding

of the steel rebar. Figures 6-6 and 6-7 illustrate these phenomena

for a reinforced concrete (masonry) specimen with approximately 0.1

percent steel.

6.3.1 Basic Mixture Relations

For illustration purposes, let the rebar layout be uniaxial

and periodic as shown in Figure 6-5. Let a specimen of initial

length 2C be subjected to a uniform boundary displacement in the

x1-direction. Then, periodicity of the microstructure (steel

layout) allows us to examine a typical cell as shown in Figure 6-5.

Previous experience with fibrous composite materials leads us to

conclude that a concentric cylinder approximation of this cell will

suffice. The cell may also be envisioned as a classical tension

test with the geometry defined by the steel spacing and volume.

For the problem under consideration, it is appropriate to

model the plain concrete (material 2) as elastic-brittle fracture

(Figure 6-8a), and the steel as elastic-plastic, Figure 6-8b. For

monotonic extension the concrete-steel bond will be modeled as per-

fect below a critical interfacial shear stress, and purely fric-

tional when the critical value is reached and slip occurs (Figures

6-8c,d). For hysteretic loading involving tensile load-unload-

reload cycles or tension-compression load-unload-reload cycles, a

more complex bond behavior will be adopted based on recent experi-

mental data.

Now, for simplicity let Poisson's ratio of each material be

zero. Then, solution of the micro boundary value problem appropri-

ate to the case under consideration furnishes the following mixture

relations:
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Figure 6-6. Reinforced concrete (masonry) under cyclic tensile

loading.
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Fiqure 6-7. Stiffness degradation in a reinforced concrete (masonry)

specimen.
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Figure 6-8. Behavior of constituents and steel-concrete interface for
monotonic extension example.
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(a) Equilibrium

(i lax1 = - P1  8 a(2p)/ax = P1  " (6-24)

(b) Constitutive

"(lp) = n(1)E(1) (la) *ax "(2p) n (2)E (2)a*(2a)/axl.(6_25)
x all E 1

(c) Interaction term

= K(ufla) - 2a)) if P < Pcr (6-26a)

(monotonic)

PI=Pcr sgn (ua _ 2a)) if p = Pcr (6-26b)

or

1 K* (ula) 1 (2 (cyclic) (6-27)

In the above, recall that "1" and "2" denote steel and con-

crete, respectively; averaged quantities (denoted by the superscript
"a") are defined by Eq. 6-9, or in terms of the cylindrical cell

geometry by (Figure 6-5)

r(1)

( )(la) 12 f( 2wr( )(1)dr

(6-28)

( )(2a) =2 1 2wr() (2) dr
w (r(2 )2 r (I ))

the quantities
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(Ip) n(1) (la) (2p) - (2) (2a) (6-2g)

are partial stresses and n(1) n(2) denote volume fractions of

steel and concrete, respectively:

n(1) r(1) /r(2)2  n(2) 
(n =l . / r;r2 2 = I - n(I  . (6-30)

The quantities E(l), E(2 ), K* are tangent moduli and K is a

constant defined by

-K 8 1 + (6-31a)

where p(1), A (2) are initial shear moduli, (u(a) E(W)I2 if

= 0, and where

*~em *= 2  + 2 n n (1) / (6-31b),,,., _n (2)2 63b

The critical value Pcr is related to the critical interface shear

stress (a*rx )cr by (see Figure 6-8d)

= ) 1(0rxl)cr (6-31c)

(d) Boundary Conditions

In addition to Eqs 6-24 to 6-27, boundary conditions must be

specified. A complete solution to the tension or tension-compres-

sion problem will necessitate consideration of two sub-problems

involving the following boundary conditions:

Problem No. 1

(la) (2a)uI  u = -0u at xI 1 0

(6.32a)
u(la) =u (2a) 0 at xi
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Problem No. 2

u la) Uo = 0 at x= 0

(6-32b)

u(1 = u(2 a) = 0at xi =

6.3.2 Monotonic Extension

Averaged Fields in Each Constituent - Consider now the case of

monotonic (displacement controlled) extension. The solution

sequence begins by solution of Eqs. 6-24, 6-25 and 6-26a together

with the boundary conditions 6.32a. This corresponds to an initial

specimen in which the concrete is linear and uncracked, the steel is
linear, the steel-concrete bond is perfect, and the boundaries at x

= 0,2f suffer uniform extension. This is illustrated as state (1)

of Figure 6-9. The solution to this elementary problem furnishes

the global (effective) stress-strain relation

a((e) (e)  (6-33)

where

(e) Uo/ , (6-33a)

n(1) (la) + n(2)a(2) , (6-33b)

T=_ n(1)E (l) + n()E 2  •(6-33c)

The average or global stresses in the steel and concrete are

(la) E(1) - E(1 e ( (2a) E (2) (e) (2)e(e)11 -1 (e) ' 11

(6-34)
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First cracking of the concrete occurs when the average* con-

crete stress a = ft, i.e., when the tensile strength of the

concrete is reached. The corresponding global stress a (e) at this

point is given by

(e) ) cr = fE( 2) " (6-35)

The actual location of the first crack is flaw-dominated. In what

follows it will be assumed that a single initial crack occurs at the

cell center, x = f. This is illustrated as state (2) of Figure 6-9.

Subsequent to the first crack one must recompute the field

variables for the state (2) of Figure 6-9. However, state (2) is

mathematically equivalent to state (2'). Consequently, one must

consider a steel-loaded specimen of length 2f, and the boundary

conditions 6-33b with

- U = fj/ E (6-36)

An analytical solution of this problem, which includes bond slip,

can be obtained in the form:

Slip Zone (0 < xl< X(p))

(la) , PcrXl (2a) , PcrXl -
11 X1) =(e) - _ I Xl = n ; (6-37a,b) -

* = r((x- 1P 2n(1) (6-37c)rxI 1 ; (1)ccr/.n

*Specification of failure in terms of local stresses has been
investigated and was found to not alter the results significantly
for this problem.
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(1a) = c y4
u1  ( 1) 2n('El E

(6-38a)

+ -e xp), (2)E (2) (1~ Pcrx (p)~ tan

u (2a) (x) TPF(7 (X2~ 2x) + '7(e)

12n ) / 2 Pr(o) -X T[\( 1)

+ 1 .---. ,-pA,---E-tanh a(Qx,) ; (6-38b)

n2E20(e) j~))

Perfect Bond Zone (x(p) < x <

(1a) (xi) 1 () + ,.(2)E (2) (1 -cxp) cosh a(e-xl) ~

L (e) co's(-X
(6-39a)

a(2a) = (2)[ cosh o(V-x 1 ) (i x~)

ii 1  - osh B(F-x(p) ((e )n2E2]

(6-39b)

G* (XI) = r(l)K(u(la) -(a) nl
rx1 1 1 U 1 1  (6-39c)

(la)) = x -(2 (1 -Pcr e sinh (-j
u1 a(x1) n ) e)~p cosha

(6-40a)

U(2a)x, [3(e)~ + 1 PcrX(D) 'E sinh (-xl) 1
U1  x 1 ) + .1 - 5os-h- ( -x()

T n(2)E(2)0(e)()

251 
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where

n12 - ( ) n(2)E(2) ) (6-41)

All functions in the interval V< x < 2f can be obtained from Eqs.

6-37 to 6-40 and symmetry.

The foregoing stresses and displacements are illustrated in

Figure 6-10 for typical material properties. The interval 0 < x <

X(p) represents a zone of interfacial slip while the interval

X(p) < x < E represents an interval of perfect steel-concrete

bond. The transition point x(p) is obtained by setting

u(la)(0) - - f E(2 )  (6-42)

in Eq. 6-38a and solving (numerically) the resulting transcendental

relation for x(p); this is the steel displacement corresponding to

the first crack in the concrete.

Consider now Figure 6-9 again. Examination of Eq. 6-37b and

6-39b, which define the concrete (average) stress distributions,

reveals that max. a(2 a) occurs at x = e of problem (2') which

corresponds to the boundary of problem (1). Consequently, if the

concrete at the cell boundary is allowed to crack, then a new crack
(2a

will initiate at x = { of problem (2') when dj1k) of Eq. 6-39b

reaches the value f't, and the crack pattern of the entire cell

corresponds to that shown in Figure 6-9. The value of a(e)

corresponding to fracture is obtained from Eq. 6-39b by setting
j ,),.= .; the steel has extended at this point by the amount

11of 2u 1 a ( ) where the latter is obtained by substituting the

value of (e) above into Eq. 6-40a; this corresponds to e(e) =

u(la)(o)/Z =u0/9.

Subsequent to the initiation of the above crack pattern, one

must recompute the field variables in each material. This is shown

as problem (3) of Figure 6-9 which is mathematically equivalent to

problem (3). However, it is evident that (3') is obtained from
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2- -= 64"

-2) .Z Crack 2r~ = .625"

2r(2) = 6.25"

3.

)(x) x x x x x x x xx

(102 psi) 1¢ x x X

a. Concrete stress distribution

(2a) 3 1

W2 x A

(1O4 psi) 

xI\

1 \ x x

x
b. Steel stress distribution

6.
xxx sI,- - lip

a ()4 x X
rxI(r. x)

(102 psi) 2n x x

c. Bond stress distribution

Figure 6-10. Typical stress distributions prior to (solid lines) and
after (x's) concrete cracking at x = Z for bond strength

700 psi and concrete tensile strength = 230 psi.
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(2') by replacing 2Z by . Thus, the field variables may be

obtained From Eqs. 6-37 - 6-40 by simply replacing z by Z12. This

suggests the following solution sequence:

1. Consider a uniformly extended, uncracked specimen of

length 2.. ((1) of Figure 6-9.) Let u0 denote

this extension.

2. After the first crack, consider a steel-loaded

specimen of length 2 . ((2) of Figure 6-9.) Find

the equilibrium state corresponding to e(e) =

- uo/ = f't/E (2 ).

3. Continue loading (extending) until a 11('), given

by the perfect bond solution, reaches f't" Let
- t,

e*(i ) be the effective strain at failure.

4. Reduce the length of the steel-loaded specimen by

1/2 (corresponding to (3') of Figure 6-9) and find

an equilibrium state for the new length

corresponding to e(e) = e*(i)

5. i = i + 1: Repeat steps 3 and 4.

The above sequence is illustrated schematically in Figure 6-9.

Composite Global Fields - Equations 6-37 through 6-40 furnish

the average stresses and displacements in each constituent. One may

also completely homogenize the steel and concrete at this point by

defining 0 (e), e(e) as the "effective" stress, strain for the

specimen, respectively. Thus:

0(e) n (1)(la) + n(2) a(2a) = crr [(P) + (a tanh
0()11 11 n(2) E(2)Xp+( tn (-p)i,

(2-43a)
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e -ua) (o) -(e -) ( )

(1 (p )E) tanh O(j p)
n " E " 2" "(e)

2
+ - . (6-43b)

n lElf 2 2n'E(')P

Given Eqs. 6-43ab, an effective secant modulus can be defined by:

E (e) - n(2 )E (2) 1 Pcrx(p)E th W (p
(e) n :- k2 1 - -tn'T

p(e))

. n(1)E 2n 1)E( ')

A tangent modulus can be similarly defined by utilizing increments

of the effective stress and strain.

C. Typical Behavior. Let us now examine the typical simulation

character of the mixture model for monotonic extension when both

bond slip and concrete cracking are present. For this purpose con-

sider a hypothetical laboratory test. In the laboratory one would
measure the total tensile force applied to a specimen and the

overall change in length. If one divides the former by the total
specimen cross-sectional area and the latter by the original

specimen length, then one obtains the effective stress a(e) and

the effective strain e(e), respectively. It is appropriate,

therefore, to employ these quantities as response measures.

Figures 6-11a,b illustrate typical graphs of effective stress

versus effective strain for a steel volume fraction of-one percent,

a steel-concrete bond strength of three times the concrete tensile

strength, and an initial crack length of P = 10r (2 ) ( = 0.10)
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where 2r (2) is the "cell" diameter. The stress drops represent

the formation of new cracks in the concrete. One would expect such

cracks to lead to stiffness degradation. This is illustrated in

Figures 6-11c,d where the normalized effective modulus E (e)It is

graphed versus the normalized effective strain e(e) ft/E(2)

for the aforementioned parameter values. As can be observed, the

degradation in specimen stiffness, as measured here by the secant

modulus, E(e) , is severe.

The behavior depicted by Figures 6-11a-d can be partitioned

into three stages as shown in Figure 6-11d. In Stage I, the

concrete is uncracked, the steel-concrete bond is perfect, and the

response is elastic. The beginning of Stage II corresponds to the

first concrete crack; during this stage the number of cracks

increases as the effective strain increases and the major decrease

in the effective specimen stiffness occurs; cracking is manifested

by drops in the effective stress; the effective stress versus

effective strain curve is discontinuous but the mean effective

stress remains relatively constant (Figure 6-11b). Cracking of the

concrete ceases at the end of Stage II and Stage III corresponds to
bond slip without further cracking; yielding of the rebar generally

occurs in this stage. Both Stages II and III represent highly

nonlinear behavior.

Consider next an actual laboratory test. Figure 6-12a shows

the results of two such tests on the wire reinforced mortar specimen

illustrated in Figure 6-13. The specimen was subjected to monotonic

extension via a displacement-controlled test system. The authors of

this data describe three basic stages of material behavior; they

correspond exactly to the stages defined above for the simulation of

material response using the mixture model. The stress drops in

Figure 6-12 correspond, as with the simulation, to the formation of

new cracks in the concrete. Vertical stress drops are not observed

in the test results as a consequence of inadequate system

stiffness. Vertical drops require an extremely stiff test system

and precision displacement control; as the test system stiffness

decreases the drops become smeared as indicated in Figure 6-12.
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In view of the above, one concludes that the global response

predicted by the mixture model embodies all of the basic features of

actual material response for monotonic extension. Consequently, it

can be stated that the mixture model is capable of realistic

response simulation for monotonic extension.

Typical Accuracy. Theory versus Experiment

In order to validate the mixture model, a set of accurate and

complete test data is necessary. Unfortunately, appropriate test

data on full-scale reinforced concrete is currently not available

for monotonic extension. However, data on scaled reinforced

concrete is available in the form of a test series by Somayaji and

Shah ( 17 6' 17 7 ) on wire-reinforced mortar. In an effort to explore

the simulation accuracy of the mixture model, several specimens in

this test series were investigated. Figure 6-14 shows the results

of one such simulation for monotonic extension. The specimen

geometry is illustrated in Figure 6-13. The component and interface

properties were deduced from component and pullout test data.

The agreement between synthesized and measured effective
stress, effective strain, and total number of cracks (over the

specimen gage length between the notches in Figure 6-13) is seen to
be good over most of the strain interval shown. The disagreement in

final slopes is believed to be due to pullout of the wires from the

specimen end sections at the original groove locations (see Figure

6-13).

In view of the above, it is concluded that the mixture model

is capable of accurate simulations of real material behavior for

monotonic extension.

6.3.3 Hysteretic Extension

Typical Behavior. Let us now turn to hysteretic extension in-

volving load-unload-reload cycles. For such deformation an analyti-

cal solution of Eqs. 2-24, 2-25, 2-27 and 2-33b is not feasible.

Consequently, the mixture relations were discretized and a numerical
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solution was carried out. The details of the numerics will not be

presented herein. It is noted that the resulting numerical program

was validated by comparing numerical and analytical results for the

case of monotonic extension.

For hysteretic deformation it is necessary to extend the de-

scription of the steel-concrete interface bond, i.e., to provide a
definition of the tangent stiffness K* in Eq. 2.27 for arbitrary

interface slip histories. Figure 6-15a illustrates the slip law

adopted for unloading to zero effective stress while Figure 6-15b
depicts the slip law used for tension-compression load-unload-reload

cycles. Both bond slip descriptions reflect recent data* (178) on

steel-concrete bond slip behavior.

Typical hysteretic response of the mixture model for unloading

to zero effective stress is illustrated in Figure 6-16. The

similarity of this response with the test data shown in Figure 6-6

is evident. Although the strain histories differ,** it can be

observed that the mixture model exhibits all of the basic features

of real material behavior. These include stress drops due to

progressive cracking, stiffness degradation due to cracking and bond

slip, strain hardening due to load transfer to the steel, and

hysteresis due to bond slip.

A single cycle of response for tension-compression cyclic
loading is shown in Figure 6-17 for the mixture model and Figure

*The vast majority of pullout and tension test data in the
literature are not of sufficient quality or completeness to be
useful for model validation purposes. Most such tests have been
conducted without any material model in mind. Consequently the
objectives of the test are not clear. Additional experiments
devoted specifically to mixture model validation are needed.

**The test specimen was subjected to reversed (compresssive) loading
resulting in a return to zero effective strain while the model was
subjected to unload-reload cycles to zero effective stress. In
addition, the peak (first crack) test specimen stress is not shown
in Figure 6-16.
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6-18 for an actual test specimen. In this case the simulation in-

cludes both opening and closing of cracks and reversed bond slip.

Once again one observes a realistic simulation of hysteretic

material response.

In view of the above it may be concluded that the mixture

model is capable of realistic material simulations for hysteretic

deformations.

Typical Accuracy: Theory versus Experiment. For the purpose

of validating the mixture model for hysteretic deformations, theI'

test data of Hegemier et al( 1 79 ) is selected. This is apparently

*the only data available on full-scale materials. The material, it

should be noted, is reinforced concrete masonry. However, the

concrete (grout) cells constitute the primary structural components

subsequent to first cracking. Consequently the data is applicable

to the present validation problem.

A theory versus experiment comparison of the effective stress

versus effective strain envelope is shown in Figure 6-19. This

envelope exhibits reasonably good agreement. The number of

theoretical cracks agree with the observed test specimen cracks.

Figure 6-20 compares theoretical and experimental stiffness

degradation. Here the agreement is seen to be excellent.

In view of the above, it is concluded that the mixture model

is capable of accurate nonlinear simulations of real material

-i :response.

6.3.4 Influence of Basic Parameters.

In subsection 6.3.2 and 6.3.3 it was demonstrated that the

mixture model is capable of accurate simulations of material re-

sponse. One is therefore in a position to utilize this simulation

tool to investigate the influence of the basic input parameters. It

is instructive to do so at this point.
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Initial Crack Spacing. The quantity 21 defines the initial

crack spacing (see Figure 6-9). It is expected that a practical

range for this parameter is (in nondimensional form) represented by

0.04 < e < 0.25. Figure 6-21 shows the typical effect of the
initial crack spacing in this range on the effective stiffness. The

latter is observed to depend weakly on e. This is fortunate from

two viewpoints: (1) in most problems the location of the first

crack is flaw dominated and is not known from a deterministic

standpoint; (2) in the process of complete homogenization (single

phase mixture) one seeks a continuum model without explicit

dependence on initial crack location. With respect to item (2),

such a model can be constructed by averaging out the e-dependence

over the £-interval of interest. The dashed curve on Figure 6-22

represents such an average, obtained here by a least squares fit of

the data to the curve

4 (6-45)
)(e ) n (1 ) E (1 )  b 1 ( e )

1 
( 1 ) E ( 1 ) + b) a]e(e)+ ae )

with, b = 0.034, a = 0.30 + 58.5 n(1).

This elementary expression is observed to be a good representation

of stiffness degradation.

Bond Strength. Steel-concrete bond strength can be expected

to be in the range f' < (o*rx)cr < 3 f , i.e., from one to
three times the concrete tensile strength. Figure 6-23 illustrates

the typical effect that this variation has on effective stiffness;

Figure 6-24 depicts the typical influence on the effective stress-

strain response. The result is surprising: for monotonic extension

the model indicates that response is weakly dependent on bond

strength. Care must be exercized in the interpretation of this

result, however. The foregoing simulations apply to a steel-pull

tension test, Figure 6-9. For example, one would expect a strong

dependence of bond strength on the response of a pull-out test.

Thus, the importance of bond strength may be problem dependent.
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Steel Volume. Figures 6-25,26 show the dependence of effec-

tive stiffness and effective stress-strain response on the steel

volume fraction, n(1).  As one would expect, the response is a

strong function of the steel volume fraction.*

6.3.5 Recovery of Microstructure

In the foregoing discussion only averaged field variables in

each constituent were considered. The mixture construction

procedure used, however, also allows one to describe the local

variations of the field variables to a certain (asymptotic) degree

of accuracy. For example, the axial components of displacement can

be written as

() [l) (2)2 , ( r 2  n ( I )

0(1) 21) + )  - n (6-46a)
1 1 2n(U (IT (2r (2)

(2) .(2a) -r ( 2 ) 2  1 r * 2  9( r* 3 n(1) n(1)in I )

2n(2)P (2) \2r (2)2 -) -4 2n(2 )
(6-46b)

Figures 6-27a,b show typical local variations of the field

variables at a specific axial location. Such detailed information

is of interest if one is concerned with items such as local cone

failures which are common to steel-pull tension tests.

6.4 REMARKS

The steel-concrete bond problem examined in the foregoing

sections corresponds to the special case where the principal stress

directions and steel layout directions coincide, and where concrete

cracking, bond slip, and steel-yield dominate natural response.

Examination of this case reveals that the mixture approach provides

exceptional modeling capability for both monotonic and hysteretic

T e-data in Figure 6-25 is based on Equation 6-45 which, in view of
the weak dependence on bond strength, does not depend on bond
strength.
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deformations with relatively few model input parameters. In par-

ticular, global stress and deformation fields and important global

nonlinear response measures concerning stiffness degradation, strain

softening, strain hardening, and hysteresis (damping) can be

accurately simulated. Most important is the conclusion that the

above global features can be synthesized from elementary material

property data on the constituents (steel and concrete) and the

constituent interfaces (steel-concrete interfaces). Finally, in

addition to global quantities, local stress and deformation fields

in the steel, the concrete, and at steel-concrete interfaces can be

simulated to a certain degree of accuracy.

It was noted previously that a significant number of problems

fall into the category above, i.e., where the principal stress

directions coincide with the primary steel layout directions. These

include beams, plates and shells subject to bending and/or nonlinear

membrane action, but with negligible in- and out-of-plane shear

stresses. These modes of behavior are relevant to both shell and

box (plate)-type protective reinforced concrete structures, for

example, in regions sufficiently far from support boundaries or

constraints.

6.5 ON SINGLE-PHASE MODELS

In Section I it was noted that single-phase models are of

interest because of their mathematical and numerical simplicity. In

particular, one expects the mathematical formulation of a single-

phase model to be easily implemented into current finite element

programs.

There are, in principle, two ways to construct a single phase

model of reinforced concrete. One is to perform an appropriate

mathematical smoothing operation on the two-phase mixture model.

This, however, is a difficult task that, if not perfcrmed properly,

can lead to considerable loss in simulation capability and

accuracy. Mathematical homogenization to furnish a single-phase

model has been studied but as yet the appropriate procedure has not

been discovered.
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Another approach is to postulate a phenomenological single-

phase model and then to evaluate the model parameters or functions

by using 'data' produced by the Two-Phase Model. This approach is

very attractive since: (1) one has much more control over two-phase

model simulations than one does over an experiment; (2) two-phase

model simulations are much less costly than actual experiments; and

(3) the accuracy of the Two-Phase Model has been demonstrated to be

excellent (at least as far as it has been developed).

To illustrate the phenomenological approach, let us adopt a

plastic-fracture model of reinforced concrete (see Section 5.1).

For simplicity, let us focus on biaxial behavior, i.e., let us

consider two-dimensional composites.

Within the context of two-dimensional composites, consider

Figure 6-28. Experimental data reveals that, if the maximum princi-

pal normal stress is positive, then stiffness degradation occurs

immediately and continues until the onset of steel yielding after

which it essentially ceases. This is demonstrated in Figure 6-28(a)

for uniaxial tension. In contrast, if the maximum principal normal

stress is negative, then stiffness degradation does not commence

until one reaches a strain corresponding to approximately the ulti-

mate stress in monotonic deformation. This is demonstrated in

Figure 6-28(b) for uniaxial compression.

Information of the above type indicates that one should

associate the initial fracture surface in the Dougill fracture

element with the initiation of concrete fracture in quadrants I,

I
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II, and IV of (biaxial) stress space, and with max a , along a path

corresponding to monotonic deformation in strain space, in quandrant

III of (biaxial) stress space. An elementary initial fracture

surface in (biaxial) strain space satisfying these conditions is

shown in Figure 6-29. The associated surface in stress space, and a

comparison of this surface with actual test data, is shown in Figure

6-30. Considering the scatter in test data, and the fact that

fracture and ultimate stress surfaces need not coincide exactly

(stiffness degradation may commence prior to ultimate stress), the

comparison indicates that the assumed initial fracture surface is,

although elementary, a reasonable approximation of test data (A

Coulomb model is also shown in Figure 6-30 for comparison purposes).

Let us focus now on quadrants I, II and IV of strain space.

For strain paths in the.'. regions plastic effects are not signifi-

cant until the onset of steel-yielding. Consequently, prior to

* yielding of the rebar, a single Dougill fracture element is

appropriate.

*Since the fracture surface selected is piecewise linear, the

loading function F can be written in the form

_]I N

F = (n) ij)(n) ij - hn)] (6-47)
n-i

where (n) are weight functions with the value 1 or 0, and h(n)

- h(n)(D), where D is the dissipation function:

D E 7 aj2 j (6-48)

f
Here .. is defined by

f 2 dD (X (X if F F = 0
3ij h h(n) d(n) ij (n) kz n) k=

(6-49)

aij= 0 if F < 0 or if F = 0 and F < 0
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Figure 6-29. Initial and subsequent biaxial fracture surfaces in
strain space. e 2 eI denote principal strains.
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The resulting constitutive relation is of the form

i Ci(6-50)
S=i jk Cikt + ai( 0

The initial moduli Cijkk(o) must be specified (i.e., uncracked

elastic properties). Subsequent stiffness moduli are computed from:

C jkZ =ij( k2)(n)/h(n) (6-51)

Given the above phenomenological model, the problem is now to

define suitable functional forms for h (D), and to prescribe the(n)

variables x Let us consider the latter, i.e., the prescription

of xij. One possibility is depicted in Figure 6-29 for the path

shown. Here the xii are constants and each linear surface segment

undergoes isotropic expansion. In this case properties in the

2-direction are not influenced by extension in the 1-direction. In

terms of an arbitrary reference coordinate system x' (Figure

6-31), the loading function in this case has the form

F = x!j cj - h(D) (ij = 1,2) , (6-52)
13 13

where (6-52) corresponds to n = 1 (the subscript 'n' is dropped in

what follows)and where

1+cos2e ' 1-cos2, 2x sin29 (6-53)
1 r- ' x22 = 2 2(

The angle * in (6-53) denotes the angle between the principal and

reference 1-axis, Figure 6-31. The stresses in the reference

coordinate system are given by

= " + i (i,j,k, = 1,2) (6-54)

13 ijkk 1

where
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•f' 2 dD ,., •, if F - F = 0 (ij,k,Z = 1,2) (6-55)"ij = -E 'I ij~kO¢k

Examination of the relations (6-52) - (6-55) reveals realistic

simulation of material stiffness degradation with an appropriate

choice of the dissipation function D. For example, the effective

shear modulus of a specimen degrades with increasing shear strain

£12 and further, this degradation is a function the extension of

the specimen. Figure 6-32 depicts an example situation where a

specimen is first extended (e'11 4 0 only), then subjected to

shear deformation (c'12) with e' = constant.11

Additional coupling can be obtained by allowing the surface to

rotate as well as translate in strain space. Figure 6-33 illustrates

a candidate model where, for the path shown,

1 +cos2e + (h-O.1) 1-cos2e

1-cos2e + (h-O.1) 1,cos2o (6-56)'- x 2 = 2- - 2 -

2xi 2 = (1.1-h) sin 2e .

Let us focus upon the case of =ij const., and consider the

next problem - that of specifying the form of h(D). For the surface

n=1, one has

Xl = I , 'X22 = A 12 =m 0 •(6-57)

Thus, during loading, one has, in the principal strain coordinates,

•f 2 dD * (6-58)
*11 0 -dW ell'

h o1i ell (6-59)

2 dD (6-60)
1111 -W ell2
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Figure 6-32. Influence of initial normal strain on shear modulus.
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Figure 6-33. Initial and subsequent biaxial fracture surfaces in

strain space. EVE:2 denote principal strains.I
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Equations (6-59) and (6-60) furnish

dEd 2 dD (-1
del ell =l

Thus,

D 1 f2l dE dJe1, +k1  Do1 (6-62)

Now, from the two-phase simulation (Section 6.3), the fol-

lowing form was found to accurately represent E versus ell:

E = a1 + I - a2  i + a 2 ]- (6-63)

where ala 2 are constants. Hence

dE (b 1+2b 2el) (-4
=-cll(bl+b 2cll)2 (-4

where

1 b -a *(6-65)

1bi Zi-5. 2  12= 2

The dissipation function corresponding to the stiffness degradation

function (6-63) can be found by substituting (6-64) into (6-62):

D = 71fjb'2b2c112  dell + 0Do (6-66)
(b 1 +b 2el)0

Performing the integration gives

D r~b+~ 1 ) + D (6-67)
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The constant of integration can be evaluated from the condition

D[(¢ci)cr] = 0, where (c11)cr corresponds to the strain at

first fracture:

D0= - b 1 + ln(bl+b2(cll)cr]

[62 2(bl+b2(el1)cr b, (6-68)

Using (6-68), D can be written as

_ (€11)cr-e11 1 b b3+€II
0 = b3 2b 2(b3+ll )(b3+(C1)7+ n (T 11-)cr ) (6-69)

where

bl 1
b a . (6-70)

The form (6-69) indicates that the appropriate dissipation function

for any strain path activating the n 1 1 surface is

D = b3 b2(bh)(b3+hcr) + 4 In b (6-71)

The quantity h = (0.1)f' c/Ec  in the above example, where

Ec denotes the (uncracked) Young's modulus for concrete. Typical

uniaxial stress-strain response versus volume fraction is depicted

in Figure 6-34 while Figure 6-35 shows the associated stiffness

(normalized) degradation. The corresponding (normalized) dissipa-

tion function is graphed in Figure 6-36.

The above curves represent the "macro" monotonic response of

reinforced concrete to uniaxial tension in the direction of the

*reinforcement. The Two-Phase Model parameter study noted previously

indicated that the residual strain due to bond slip where the

specimen was unloaded to zero stress was negligible. Only when the

steel began -to yield did the residual strains become significant.

Further, in all cases, the stiffness modulus was essentially

constant immediately before yielding began. This suggests, for

incorporation of yielding, a simple superposition of fracturing and
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Figure 6-34. Single-phase model simulation of stress versus
strain.
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INFLUENCE OF STEEL VOLUMIE FRACTION
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Figure 6-35. Single-phase'model simulation of stiffness
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INFLUENCE OF STEEL VOLUME FRACTION
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plasticity models and a division of response into three connective

stages of response for extension:

I. Linear Elastic

II. Progressive fracturing with stiffness degradation

III. Yielding with strain hardening and constant elastic

moduli.
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SECTION 7

CONCLUDING REMARKS

The following were presented in this report: (1) a state-of-

the-art review of plain and reinforced concrete data and models, (2)

progress made to-date concerning the development of an improved

nonlinear plain concrete model and (3) progress made to-date on the

construction of a nonlinear model for reinforced concrete.

Discussion in the first area included a very comprehensive

review and evaluation of the experimental and theoretical literature

on plain concrete, and steel-concrete interaction. In the area of

plain concrete it was noted that improvement is needed in the

mathematical description of yield and failure surface geometry,

strain softening, stiffness degradation, and strain rate effects.

In the area of reinforced concrete it was noted that the manner in

which steel and concrete are conventionally mixed analytically is in

need of considerable improvement. Problems in this area were

classified into four basic groups: (1) the steel-concrete bond

problem, (2) the steel-concrete dowel problem, (3) the aggregate

I interlock problem, and (4) the steel buckling-concrete spallation

problem.

Discussion in the second area focused upon the development of

an improved failure surface for plain concrete. Such a surface

plays an important role in the mathematical description of pl'ain

concrete. A three parameter surface was postulated and shown to

provide an excellent fit to uniaxial, biaxial, and triaxial experi-

mental data on plain concrete. The failure surface is written in

terms of two stress invariants.

Discussion in the third area focused upon the development of a

mixture theory with microstructure to model reinforced concrete.

Attention here was confined to the steel-concrete bond problem. A

general theoretical framework was presented and the resulting theory

was 'closed' for a class of problems. Comparisons of experimental

data and theoretical simulations were made for monotonic and cyclic
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uniaxial extension. These comparisons revealed excellent simula-

tion capability and accuracy. In particular, strain hardening,

strain softening, stiffness degradation, and hysteresis were

properly simulated. Consequently, the mixture theory approach

appears to offer considerable improvement in simulation capability.

It is recommended that priority for future developments in

this area be given to (1) an appropriate combination of plastic and

fracturing elements for plain concrete, (2) the steel-concrete dowel

problem for reinforced concrete and (3) the strain rate problem for

plain concrete.

With respect to item (1) it is noted that procedures for

combining plastic and fracturing elements have remained arbitrary up

to this point. A comprehensive study of series, parallel, and

various weighted techniques is necessary in order to fully under-

stand the implications of each model.

Item (2) above constitutes the next basic step in the mixture

theory construction process. This is a difficult task which will

require a combined theoretical and experimental effort.

Item (3) has not been seriously approached in the literature

as yet. In particular, virtually all current models of plain and

reinforced concrete are strain rate independent. This is in

contrast to the vast majority of the defense community-related

problems which involve high strain rates. Consequently, an effort

should be made to incorporate strain rate effects into a constitu-

tive model of plain and reinforced concrete. Two avenues are open

in this subject area. One is the use of a viscoplastic model in

place of the current rate independent plastic element. The other is

the use of the endochronic theory with time included in the defini-

tion of the intrinsic time variable.
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